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ABSTRACT

With the distribution of speech technology products all over the
world, the fast and efficient portability to new target languages be-
comes a practical concern. In this paper we explore the relative ef-
fectiveness of adapting multilingual LVCSR systems to a new tar-
get language with limited adaptation data. For this purpose we in-
troduce a polyphone decision tree specialization method. Several
recognition results are presented based on mono- and multilingual
recognizers. These recognizers are developed in the framework of
the project GlobalPhone. In this project we investigate speech
recognition in the 15 languages Arabic, Mandarin and Shanghai
Chinese, Croatian, English, French, German, Japanese, Korean,
Portuguese, Russian, Spanish, Swedish, Tamil, and Turkish.

1. INTRODUCTION

With the distribution of speech technology products all over the
world, the fast and efficient portability to new target languages be-
comes a practical concern. One of the major time and costs factor
for developing LVCSR systems in new languages is the need of
large amounts of training data. In this paper we describe a mul-
tilingual acoustic model combination for the purposes of porting
these models to a new target language. We address three aspects
of research due to the amount of available data in the target lan-
guage:
Cross-language transfer refers to the technique where a system
developed in one language is applied to recognize another lan-
guage without using any training data of the new language. Exper-
imental results indicate a relation between language similarity and
cross-language performance [1], [2]. Furthermore it is shown that
multilingual acoustic transfer models perform better than mono-
lingual ones [2], [3]. The key idea in the bootstrapping approach
is to initialize a recognizer in the target language by using acoustic
models from other languages as seed models. After initialization
the system is completely rebuilt using large training data of the
target language. This idea was first proposed by Zue and evaluated
by [4] and [5] showing that cross-language seed models outper-
form flat starts or random models. Recently the usefulness of mul-
tilingual phoneme models as seed models have been demonstrated
by [6], [7]. The language adaptation technique lies between the
two extremes in terms of training data. With this technique an ex-
isting recognizer is adapted to the target language with only very
limited data. [5], [6], [8] proved that the language adaption perfor-
mance is strongly related to the amount of adaptation data. [6] and
[8] investigated the effectiveness of multilingual acoustic models
showing that monolingual models were outperformed.
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Ch-Mandarin 14.5 45K 207 45.2 141 12.5
Croatian 20.0 15K 280 36.7 32 9.6
English 14.0 64K 150 46.4 46 9.2
French 18.0 30K 240 36.1 38 12.1
German 11.8 61K 200 44.5 43 9.0
Japanese 10.0 22K 230 33.8 33 7.9
Korean 14.5 64K 137 36.1 43 9.9
Spanish 20.0 15K 245 43.5 42 8.2
Turkish 16.9 15K 280 44.1 31 8.5

Table 1: LVCSR systems in nine languages

Previous systems which combine multilingual acoustic mod-
els have been limited to small tasks and context independent mod-
eling. The extension to wider context modeling across languages
was first proposed by [9] and [3]. However, when porting those
wide context models to new languages, the problem of phonetic
context mismatches is an open issue. We present a new approach
to overcome this problem and will report the results below.

2. LANGUAGE ADAPTATION

2.1. Multiple language recognition

As a starting point for adaptation to new languages, we developed
language dependent LVCSR systems in nine languages using our
Janus Recognition Toolkit (JRTk). These monolingual recogniz-
ers were trained and tested on the GlobalPhone database, which
was modelled on the WSJ task. GlobalPhone currently consists of
the languages Arabic, Chinese (Mandarin and Shanghai dialects),
Croatian, German, Japanese, Korean, Portuguese, Russian, Span-
ish, Swedish, Tamil, and Turkish. Along with the English WSJ and
French Bref task the database covers 9 of the 12 most widespread
languages of the world. In each of the GlobalPhone languages
about 15 hours of high quality speech was collected, spoken by
100 native speakers per language. For further details refer to [8].

For each language the baseline recognizer consists of a fully
continuous 3-state HMM system with 3000 triphone models. Each
HMM-state is modeled by a codebook containing a mixture of 32
Gaussians. The preprocessing is based on 13 Mel-scale cepstral
coefficients with first and second order derivatives, power and zero
crossing rate. After cepstral mean subtraction a linear discriminant
analysis reduces the input to 32 dimensions.

�

Mandarin and Korean is given in character based error rate , Japanese
in hiragana based error rate



Throughout the experiments 80% of the database speakerswere
used for training the acoustic models, 10% were defined as a test
set, and the remaining 10% were kept as further cross-validation
set. In table 1 we arranged the word based error rates (ER) vo-
cabulary size (Vocab) and trigram perplexities (PP) for the mono-
lingual recognizers. Since the core engines are the same across
the languages, differences in the recognition performance are due
to either language specific inherent difficulties or to differences in
quality and quantity of the used knowledge sources and data. In
our opinion it is misleading to infer from the given word error rates
to language difficulties. On the one hand the concept of a word
does not hold for each language (Chinese, Japanese, and Korean),
on the other hand the word error rates are strongly affected by
available corpus data and by the human language expertise, which
in our case is not comparable in all languages.

In order to give a more reliable measure of the acoustic diffi-
culties of the nine languages table 1 presents the phoneme based
recognition rates using a phoneme recognizer without any phono-
tactic constraints. The results indicate differences in acoustic con-
fusability between languages. We found two groups, one lead by
Japanese which seems to be the easiest task, followed by French,
Korean, and Croatian. The second group is significant harder to
recognize, with English to be bottom of the group.

2.2. Multilingual acoustic model combination

In previous experiments we found that multilingual acoustic mod-
els outperform monolingual ones for the purposes of language
adaptation [3]. Therefore, we briefly summarize our multilingual
acoustic model combination. We intend to share acoustic mod-
els of similar sounds across languages. Those similarities can be
either derived from international phonemic inventories like IPA,
by data-driven methods or by a combination of both. We de-
fined a global phoneme set based on the phonemic inventory of
the monolingual systems. Sounds which are represented by the
same IPA symbol share one common phoneme category. Start-
ing with five languages we get 171 language specific phonemes
and pooled them together into 85 phoneme categories. For nine
languages we pooled 339 language dependent phonemes into 140
categories. Thus the phone-set compression rate of 49% in the
five-lingual case increases to 41% in the nine-lingual case.

Multilingual context dependent models are built by assigning
one model to each phoneme category and training this model by
sharing the data of all languages belonging to that phoneme cate-
gory. For context-dependent modeling we use a divisive clustering
algorithm that builds context querying decision trees. As selec-
tion measure for dividing a cluster into two subclusters we use the
maximum entropy gain on the mixture weight distributions. This
clustering approach gave significant improvements across different
tasks [10] and languages [11]. In previous experiments we investi-
gated two methods of data sharing for model combination: Train-
ing the models either by blind sharing the data of all languages
which belong to the phoneme category or by preserving the in-
formation about to which language the data belong. The latter
means that the set of context questions for the decision tree clus-
tering is enhanced by adding questions about the language or lan-
guage group to which a phoneme belongs. The decision whether
language information is more important than phonetic context in-
formation becomes data-driven. When the recognition of known

languages is the target, our experience showed -coincident to other
studies [9], [6]- that the acoustic model combination achieves bet-
ter results if the language information is preserved. However, blind
data shared models perform better if the recognition of new lan-
guages is the target, which can be explained by an augmented lan-
guage robustness by sharing all information across languages (see
[3] and [8] for details). In the following experiments we apply the
blind shared multilingual acoustic models to the new target lan-
guage Portuguese.

2.3. Phonetic Context Mismatch

Using larger phonetic context windows (polyphonic modeling) for
multilingual acoustic models, a mismatch arise due to the phono-
tactic differences between languages. In order to examine the
polyphone mismatch between languages, we define the non sym-
metric polyphone coverage measure as the number of polyphone
occurrences in one language covered by polyphones in another lan-
guage. Figure 1 shows the coverage for Portuguese phonemes re-
sulting from different context width of a nine- and five-language
pool. The calculation of the plotted coverage proceeds as fol-
lows: first we select the language among all pool languages which
achieves the highest coverage for Portuguese and plot that value
tagged with the language name. We then remove this language
from the pool and calculate the coverage between Portuguese and
each language pair resulting from the combination of removed lan-
guage plus remaining pool language. The procedure is repeated for
triples and so forth. Thus in each step we find the language which
maximally complements the polyphone set.
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Figure 1: Portuguese polyphone coverage by nine languages

From figure 1 we observed that as expected the coverage dra-
matically decrease for larger context (for quintphones which are
not ploted in figure 1 a maximal coverage of 46% could be at-
tained). After incorporating three languages the coverage of Por-
tuguese monophones can not be increased any further, limited to
91% with the nine language pool and dropping to 85% when Span-
ish (SP) is removed. The contribution of the Spanish phoneme
set to the monophone coverage can not be compensates by other
languages remaining in the pool. Second we found a saturation
in coverage for four languages after increasing the context width
to 1. Further increasing the context width to 2 we observed that



at least five languages contribute to the quintphone coverage rate.
For triphones the main contribution comes from the Croatian lan-
guage. Removing this language from the pool is nearly completely
compensate by German and Spanish triphones. This indicate that
Croatian, German, and Spanish polyphones covers a similar por-
tion of the Portuguese triphones set. Whereas the curve (KR-SP-
JA-TU-KO) indicates that the French language contribute unique
polyphones which can not be recruited from other languages. In
this case the lacking phonemes belong to the categories of nasal
vowels.

We conclude from these observations that for the design of a
language pool for adaptation purposes it is more critical to find a
complement set of languages than to cover a large number of lan-
guages. It can be easily seen from the coverage rates that using
a polyphone tree even based on several languages can not be ap-
plied successfully to a new target language without adapting it to
the new contexts.

3. POLYPHONE DECISION TREE SPECIALIZATION
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Figure 2: Polyphone Cluster Tree for middle state of monophone
D before Polyphone Decision Tree Specialisation (PDTS)

In order to overcome the problem of the observed mismatch be-
tween represented context in the multilingual polyphone decision
tree and the observed polyphones in the new target language, we
introduce the Polyphone Decision Tree Specialisation (PDTS) ap-
proach. In this approach the clustered multilingual polyphone de-
cision tree is adapted to the target language by restarting the deci-
sion tree growing process according to the limited adaptation data
available in the target language. Figure 2 illustrates the polyphone
cluster tree for the middle state of the monophone D before adapta-
tion. During the clustering procedure only three splits resulting in
four leaf nodes were decided to present properly the phonetic con-
text of D in the multilingual data. However, in the Portuguese lan-
guage this phoneme is very frequent and occurs in very different
contexts. Traversing this non-adapted tree during decoding Por-
tuguese speech would lead to very poorly estimated residual class
models, since the context questions do not reflect the Portuguese
contexts.

Figure 3 shows the decision tree for the middle state of the
same phoneme D after applying PDTS. The former tree was spitted
further according to matching questions, resulting in 18 leaf nodes.
The regrowing process was completed after reaching a predefined
number of new leaf nodes depending on the amount of training
data. The adapted decision tree now represents valid contexts of
the Portuguese D and is expected to improve the recognition re-
sults for Portuguese input.
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Figure 3: Polyphone Cluster Tree for middle state of monophone
D after Polyphone Decision Tree Specialisation (PDTS)

4. EXPERIMENTS

We adapt a five-lingual recognizer containing Croatian, Japanese,
Korean, Spanish and Turkish data to the Portuguese language and
investigate the benefit of the described methods. For adaptation we
assume that only 200 Portuguese spoken utterances (25 minutes)
and their transcription (3370 words) are given. Although [5] found
that the number of speakers is more critical than the number of ut-
terances we decide to use only 7 different Portuguese speakers for
adaptation since in our dictation task it is more expensive to get
single utterances of many different speakers than to get many ut-
terances spoken by one speaker. A subset of 96 randomly selected
utterances from 3 test speakers was used to carry out our experi-
ments. The test dictionary has 7300 entries, the OOV-rate is set to
0.5% by including the most common test words. A trigram lan-
guage model was calculated on 10 million word text corpus from
Agence France Press (LDC95T11) interpolated with the Global-
Phone data leading to a trigram perplexity of 297.

System Data Labels Technique Ptree

Cross-language transfer
S1 0 - - ML
S2 0 - - CI

Language adaptation
S4 100 initial MLAdapt CI
S5 100 initial Viterbi ML
S6 100 initial MLAdapt ML
S7 100 good MLAdapt ML
S8 200 good MLAdapt ML
S9 200 good PDTS ML-PO

Bootstrap
S3 100 initial Rebuild PO
S10 6600 good Rebuild PO

Table 2: Description of systems ported to Portuguese

Table 2 describes the systems used for our porting experi-
ments, their performance on Portuguese is compared in figure 4.



The column Data in table 2 refers to the number of recordings used
as training data. Transfer without any training data results in the
cross-language approach as performed in the systems S1 and S2.
Whereas the training based on 6600 utterances (S10) represents the
bootstrap technique. For the systems S3 to S9 we used very lim-
ited data of 100 and 200 utterances. Labels explains whether the
phonetic transcriptions of the recordings are created based on the
multilingual recognition engine (Labels = initial) or based on good
phonetic alignments which we taking to be already given (Labels
= good). The latter was used to accelerate our adaptation process.

The term Technique is related to the training approach ap-
plied to the systems. Viterbi refers to one iteration of viterbi train-
ing along the given labels. MLAdapt means Maximum Likeli-
hood Adaptation technique, Rebuild refers to the iterative proce-
dure of writing labels, viterbi training, model clustering, training,
and writing improved labels. PDTS is the described Polyphone
Decision Tree Specialization. The Ptree item describes the origin
of the polyphone decision trees. CI refers to context independent
modeling, meaning that no polyphone tree is used, ML is the multi-
lingual decision tree with 3000 polyphones and PO is a polyphone
tree build exclusively on Portuguese data. ML-PO refers to the
regrown polyphone tree applying PDTS.

Figure 4: Language adaptation to Portuguese

As expected the cross-language transfer using the five-lingual rec-
ognizer without any training on Portuguese data results in extremely
high word error rates of 73.1% for the context dependent system
(S1) and slightly better error rates of 70% for the context indepen-
dent system (S2). Therefore, the initial labels are written with sys-
tem S2. Using 100 of these initial labels for adapting the context
independent multilingual system (S4) and the context dependent
system by MLA (S6) or viterbi training (S5) shows a significant
gain. In S3 the initial labels are used to completely rebuild a Por-
tuguese system after bootstrapping from multilingual seed models.
The comparison of S6 and S3 indicates that the adaptation with-
out polyphone decision tree specialization is outperformed by the
bootstrap technique (S3) even if data are very limited. Neverthe-
less the word error rate of the winning system S3 achieving 50.9%
is still unsatisfying.

We obtain the next performance boost from using improved
labels (S7) and double amount of adaptation data (S8). Finally
we applied our PDTS approach (S9) which leads to significant
improvements achieving 33% word error rate. This performance

compares to 19.7% word error rate (S10) resulting from bootstrap-
ping and rebuilding a Portuguese LVCSR system using 16 hours
of speech spoken by 78 speakers. To summarize we get the high-
est performance gain in language adaptation from the PDTS tech-
nique, enlarging adaptation data, and improved labels, in this or-
der.

5. CONCLUSION

In our language adaptive approach we explore the relative effec-
tiveness of multilingual context dependent acoustic models in com-
bination with a polyphone decision tree specialization (PDTS). We
examine the benefit when porting a multilingual engine to new
target languages with very limited training data. The results are
very promising achieving 33% word error rate for an Portuguese
LVSCR system when using only 200 spoken utterances for adap-
tation.
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