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Abstract

This paper describes the automatic speaker segmentation and
clustering system for natural, multi-speaker meeting
conversations based on multiple distant microphones. The
system was evaluated in the NIST RT-04S Meeting
Recognition Evaluation on the speaker diarization task and
achieved speaker diarization performance of 28.17%. This
system also aims to provide automatic speech segments and
speaker grouping information for speech recognition, a
necessary prerequisite for subsequent audio processing. A
44.5% word error rate was achieved for speech recognition.

1. Introduction

In recent years, automatic processing of natural, multi-speaker
meeting audio has seen growing interest. This is reflected by
the appearance of large meeting corpora from different
research groups and the new evaluation paradigm presented by
NIST, called Rich Transcription on meetings. Automatic
processing of a meeting to generate a full representation of the
meeting has been considered as an “Al complete”, as well as
“ASR complete” problem [1]. It includes issues about
transcription, meta data extraction, summarization and so on.
Automatic speaker segmentation and clustering is one type of
meta information extraction.

NIST started the “Who Spoke When” speaker diarization
evaluation (which is the speaker segmentation and clustering
task) on telephone conversations and Broadcast News in
2002. However, it is more challenging to segmenting and
clustering speakers involved in meetings with overlaps and
with distant microphones. Therefore, NIST initiated the same
evaluation on meetings in the spring of 2004.

Speaker segmentation and clustering consists of
identifying who and when a speaker speaks in a long meeting
conversation. Ideally, a speaker segmentation and clustering
system will discover how many people are involved in the
meeting, and outputs clusters with each corresponding to one
speaker. This paper focuses on the automatic speaker
segmentation and clustering of meetings based on multiple
distant microphones.

The remainder of this paper is organized as follows. In
section 2, we briefly describe the overall system overview.
Then we explain the speaker segmentation and speaker
clustering components in detail in section 3 and section 4
respectively. Section 5 presents our experimental results and
conclusions follow in section 6.

2. System overview

This system proceeds in following steps: 1) initial
speech/non-speech segmentation on each channel; 2)
unification of the initial segmentations across multiple

channels; 3) best channel selection for each segment; 4)
speaker change detection in long segments; 5) speaker
clustering on all segments; 6) smoothing processing.

The initial speech/non-speech segmentation is produced
based on the acoustic segmentation software CMUseg_0.5.
We removed the classification and clustering components and
just used it as a segmenter. Detailed description about the
algorithms used in this software can be found in [2].

In the multiple channel unification step, the segment
boundaries are unified across multiple channels. Figure 1
shows an example for two distant microphone channels. The
initial segmentation produces two speech segments on
channel A, (2, t3) and (t5, t7); and two segments, (t1, t4) and
(t6, t8), on channel B. After unification, the segments across
the two channels are (t1, t2), (2, t3), (3, t4), (t5, t6), (t6, t7)
and (t7, t8).
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Figure 1: Multiple Channel Unification

We conduct best channel selection for each of the
segments produced during the unification step. We compute
the minimum energy (MinE;), maximum energy (MaxE;), and
the signal-to-noise ratio (SNR;) within one segment on each
channel. We select the best channel for each segment
according to following criterion:

I =argmin———®
Speaker change detection is followed on any segment that is
longer than 5 seconds. We choose 5 seconds because this was
found to give optimal segmentation accuracy via cCross-
validation on the development set. Speaker clustering is then
performed on all the segments. We will discuss the speaker
change detection and speaker clustering modules in detail in
the following two sections.

In the final smoothing step, we merge any two segments
that belong to the same speaker and have less than 0.3
seconds gap between them. This is based on our experience in
the RT-03S evaluation.
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3. Speaker segmentation

For any segment that is longer than 5 seconds, we use a
speaker change detection procedure to check whether there
exist speaker turn changes that have not been detected. The
procedure is shown in Figure 2.

We first compute the distances between two neighboring
windows. The window size is one second each and it shifts



every 10ms. The distance between Winl and Win2 is defined
as follows
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where X, Xg, and X are the set of feature vectors in Winl,
Win2, and the window which concatenates Winl and Win2.
04, 60p,and B¢ are statistical models built on X,, Xp, and

Xc respectively. We can see from (2) that the larger the
distance is, the more possible a speaker turn change exists.
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Figure 2: Speaker Change Detection

We assume a speaker turn change exists if the local
maximal of distances satisfy (3).
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where Dy, refers to the local maximal distance value and
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Dmin and Dmin refer to the left and right local minimal

distance values around the local maximum. [,y refers to

the index of the local maximum. The third item in (3) means
that we not only consider the value of the local maximum but
also its shape. @ and f are constant thresholds. We found

the optimal values for them via cross-validation on the
development set. & equals to the variance of the all the

distance values times a factor of 0.5. [ is set to be 5. Our

approach differs from other approaches such as in [3, 4] in the
sense that, in our implementation, we build a Tied GMM
(TGMM) using the entire speech segments and generate a
GMM for each segment via adapting the TGMM. The
advantage is that a more reliable model can be estimated with
Tied GMM.

4. Speaker clustering

Fro speaker clustering, we use a hierarchical, agglomerative
clustering technique TGMM-GLR. We first train a TGMM 6
based on the entire speech segments. Adapting € on one
segment generates the GMM for that segment. The definition
of the GLR distance between two segments is the same as in
(2). A symmetric distance matrix is built by computing the
pairwise distances between any two segments. At each
clustering step, the two segments, which have the smallest

distance, are merged, and the distance matrix is updated. We
use the Bayesian Information Criterion as stopping criterion.

4.1. Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is a model
selection criterion widely used in statistics. It was introduced
for speaker clustering in [3]. The Bayesian Information
Criterion states that the quality of model M to represent data

{)C],”',xN} is given by
BIC(M)zlogL(x],...,xN|M)_%v(M)logN @

with L(xl,---,xN|M ) representing the likelihood and
V(M ) representing the complexity of model M , which

equals to the free model parameters. Theoretically, A should
be equal to 1, but it is a tunable parameter in practice.
The question if there is a speaker change at point i in

data X = {xl ,---,xN} can be converted into a model
selection problem. The two alternative models are: 1) model
M| assumes that X is generated by a multi-Gaussian
process, that is {x1,~~-,xN}~NUt,Z), 2) model M,
assumes that X is generated by two multi-Gaussian
bx b~ Nl zy)
{x,-_,_] ,---,xN}~ N(,uz,Zz). The BIC values for the two
models are:

processes, that is

BIC(M/)=1og L(xl,m,xN|,u,Z)—%v(M1)logN
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The difference between the two BIC values is:

ABIC = BIC(M)-BIC(M )
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If the value of ABIC is negative, it claims that model Mo

fits the data better, which means that there is a speaker change
at point i . Therefore, when the value of ABIC for the two
closest segments (candidates for merging) is negative, we stop
the clustering process.

5. Experimental results

5.1. Data

All experiments throughout this paper were conducted on the
RT-04S meeting data. Each meeting was recorded with
personal microphones for each participant (close-talking
microphones), as well as room microphones (distant
microphones) placed on the conference table. In this paper we



focus on the task of automatic speaker segmentation and
clustering based on the distant microphone channels only.

Both the development and the evaluation datasets from
the NIST RT-04S evaluation were used. The data were
collected at four different sites, including CMU, ICSI, LDC,
and NIST [5, 6, 7, 8]. The development dataset consists of 8
meetings, two per site. 10-minute excerpts of each meeting
were transcribed. The evaluation dataset also consists of 8
meetings, two per site. 11-minute excerpts of each meeting
were selected for testing. All of the acoustic data used in this
work is of 16kHz, 16-bit quality. Table 1 gives a detailed
description of the RT-04S development dataset, on which we
report detailed performance numbers.

Table 1: Development Dataset

Meeting ID (abbreviation) # Spkrs | # distMic
CMU_20020319-1400 (CMU1) 6 1
CMU_20020320-1500 (CMU2)

ICSI_20010208-1430 (ICSI1)

ICSI_20010322-1450 (ICSI2)

LDC_20011116-1400 (LDC1)

LDC_20011116-1500 (LDC2)
NIST_20020214-1148 (NIST1)
NIST_20020305-1007 (NIST2) 7 6
Note that we ignored the “PDA” low quality channels in the
ICSI meetings.
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5.2. Speaker Segmentation Performance

Good speaker segmentation should provide the correct
speaker changes, as result, each segment should contain
exactly one speaker. There are two types of errors related to
speaker change detection: insertion error (when a speaker
change is detected but it does not exist in reference) and
deletion error (an existing speaker change is not detected).
These two types of errors have different impact depending
upon the application. In our system, the segmentation stage is
followed by a clustering stage. Therefore, insertion errors
(resulting in an over segmentation) are less critical than
deletion errors, since the clustering procedure has the
opportunity to correct the insertion errors by grouping the
segments related to the same speaker. While deletion errors
cannot be recovered in the clustering stage.

A reference of speaker change is required for analyzing
these errors. The reference was generated from the manual
transcription of a meeting. However, the exact speaker change
point is not very accurate in the reference, since the
perception of speaker changes is very subjective. Therefore,
we define an accuracy window around the reference speaker
change point, following [9] it is set as 1 second. For example,
If N, and N, are reference and hypothesized speaker change
points respectively, they are mapped to one-another and we
call the hypothesis Ny, is a hit if 1) Nj, is the hypothesized
change point closest to N; and 2) N; is the reference change
point closest to Ny, and 3) the distance between N, and N, is
less than 1 second. From the formed mapping between
reference and hypothesis, we can determine the precision
(percentage of hit among all the hypothesized change points)
and recall (percentage of hit among all the reference change
points). Deletion errors will directly lower the recall. Insertion
errors will reduce the precision. Generally we seek systems
that exhibit both high recall and precision. However, as

mentioned previously, deletion errors are more critical than
insertion errors, we care more about the recall value.

Table 2: Segmentation Performance

Precision Recall

Initial 86.83% 11.60%
Unification 87.74% 19.00%
Turn Detection 85.17% 76.41%

Table 2 shows the speaker segmentation performance at
different system steps. Not surprisingly, the low recall of the
initial segmentation indicates high deletion errors, which
means a lot of speaker changes are missed. Multiple channel
unification compensates a little for the deletion errors.
Speaker change detection obtained the big gain on the recall
while only suffering little precision decrease.

5.3. Speaker Diarization Performance

We use the standard performance measurement, speaker
diarization error, for speaker segmentation and clustering
which was used in the NIST RT-03S evaluation [10]. The
overall speaker segmentation and clustering performance can
be expressed in terms of the miss (speaker in reference but not
in system hypothesis), false alarm (speaker in system
hypothesis but not in reference), and speaker error (mapped
reference speaker is not the same as the hypothesized speaker)
rates. The speaker diarization score is the sum of these three
components and can be calculated using this formula:

DiaErr =

x {ur($) (max (Vo7 (). Moy (8)~ Nopreer (S)}
P Wur(S)«N 0 (S)]

where DiaErr is the overall speaker diarization error,
dur(S ) is the duration of the segment, N ,r (S ) is number

of reference speakers in the segment, N sys (S ) is the number

of system speakers in the segment, N, ;. ecr (S) is the

number of reference speakers in the segment for whom their
mapped system speakers are also in the segment. This formula
allows the whole file to be evaluated, including regions of
overlapping speech.

Table 3: Speaker Diarization Performance (in %)

Development Set Evaluation Set
No No
Overlap overlap Overlap overlap
Miss 8.7 0.0 19.8 0.4
FA 33 2.9 2.6 4.1
SpkrErr 25.1 26.7 17.8 234
DiaErr 37.11 29.59 40.19 28.17

Table 3 shows the overall speaker diarization performance
on the development set and the evaluation set under the
condition of including the regions of overlapping speech and
excluding the regions of overlapping speech. Comparable
results are achieved on both datasets. The dominant error
among the three error components is speaker error.



In table 4, we show the speaker diarization performance
on individual meetings of the development set. The results
exhibit large variability over meetings collected at different
sites. We think that this variability may be due to unquantified
meeting characteristics such as overall degree of crosstalk,
general meeting geometry including room acoustics and
microphone variability within a meeting. However, we
noticed that there is a general trend that our system usually
under-estimates the number of speakers involved in a
meeting. Although, on meetings CMU2 and NISTI, the
system under-estimates the number of speakers, it still
achieves better performance compared to most other
meetings. This is due to the fact that both these two meetings
have a dominant speaker who talks more than 70% of the time
during the whole meeting.

Table 4: Individual Speaker Diarization Performance
on dev set including overlapping speech (in %)

Meeting | Miss FA  |SpkrErr | DiaErr | #ref | #sys
CMUI | 12.6 43 303 | 47.12 6 4
CMU2 | 34 5.0 163 | 24.72 4 2
ICSI1 4.7 2.9 35.0 | 42.62 7 4
ICS12 9.8 1.1 37.0 4792 7 3
LDCI 6.2 2.6 9.0 17.78 3 3
LDC2 | 17.3 1.1 11.0 | 2941 3 3
NISTI | 7.2 7.1 11.7 | 26.01 6 2
NIST2 | 6.5 3.1 49.5 |59.04 7 2

We conducted an interesting experiment. We assume a
one-to-one mapping between channel and speaker. We use the
best channel information only, which was provided in the
channel selection step described in section 2. We did not do
speaker clustering. For any two segments, if the channel
selection process produces the same best channel for them, we
assume these two segments belong to the same speaker. We
got 55.45% and 52.23% speaker diarization errors under the
condition of including and excluding overlapping speech.
This indicates that there is rich information that can be used
to help speaker segmentation and clustering from the multi-
channel recordings. Our current system utilizes such
information implicitly by doing best channel selection. In the
future work, we will explore more efficiently using the
information provided by multi-channel recordings, such as
timing information which relates to the speaker locations.

5.4. Speech Recognition Performance

Speech recognition system achieved a 44.5% word error
rate on the evaluation set when using segments provided by
our system, refer to [11] for detail. We have noticed that
speech recognition has different requirement for speaker
segmentation and clustering. In speech recognition, the goal
of speaker segmentation and clustering is to serve speaker
adaptation. Speaker adaptation concerns more about
regression of speakers, not strict classification of speakers. So
if two speakers sound similar, they can be considered as equal
and grouped into one cluster. It actually would be rather
desirable for speech recognition to group similar speakers
together, so that it can get enough adaptation speech.
Therefore, a specific speaker segmentation and clustering
system tuned in favor of speech recognition may achieve

better word error rate although the speaker diarization
performance might get worse.

6. Conclusions

We described our automatic speaker segmentation and
clustering system for natural, multi-speaker meeting
conversations based on multiple distant microphones. The
performed experiments show that the system is capable of
providing useful speaker information on a wide range of
meetings. The system achieved 28.17% speaker diarization
score in the NIST RT-04S evaluation. The speech recognition
system achieved the performance of 44.5% word error rate
when using segments provide by this system in RT-04S.
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