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Abstract

In this paper we present our current work on a tight
coupling of a speech recognizer with a dialog manager
and our results by restricting the search space of our
grammar based speech recognizer through the informa-
tion given by the dialog manager.

As a result of the tight coupling the same lingus-
tic knowledge sources can be used in both, speech rec-
ognizer and dialog manager. Furthermore, the flexible
context-free grammar implementation of our speech de-
coder Ibis allows weighting of specific rules at run-time
to restrict the search space of the recognizer for the next
decoding step. These rules are given by the dialog man-
ager depending on the current dialog context.

With this approach we were able to reduce the word
error rate of user responses to system questions by 3.3%
relative for close talking and 16.0% relative, when using
distant speech input. The sentence error rates were re-
duced by 2.2%, 9.2% respectively.

1. Introduction

In the upcoming field of humanoid and human-friendly
robots, the ability of the robot to interact in a simple, un-
constrained and natural way with its users is of great im-
portance. Therefore, a user should neither be restricted
by a command based speech interface nor should he
be forced to wear head-mounted microphones in order
to communicate with the robot. Instead, spontaneous,
mixed initiative speech dialogs recorded by distant mi-
crophones should be possible. To improve the system un-
derstanding performance in such difficult situations, we
are working on a tight coupling of the speech recognizer
and dialog manager.

Most current human-machine interfaces consist of
three main components: a speech recognizer, a natural
language parser and a dialog manager [1, 2, 3]. The out-
put of a speech recognizer in form of n-best lists or lat-
tices is given to the NL parser, which builds one interpre-
tation out of it and then passes it on to a dialog manager
for making a system decision depending on the current
dialog context. Our proposed tight coupling makes a sep-

arate NL parser superfluous and the human-machine in-
terface more robust, easier to maintain and hence more
portable to new domains.

One well-known technique for making human-
machine interfaces more robust is dialog context or state
dependent language modeling for the speech recognizer.
In most cases n-gram language models are used for
speech recognition and therefore, e.g., language model
interpolation with dialog state specific models [4, 5]. The
problem hereby is the data sparseness of the state depen-
dent sub-corpora. Therefore in [5] the use of maximum
entropy exponential models are suggested.

Another solution is splitting language modeling into
a dialog dependent concept modeling using n-grams and
a syntactic modeling consisting of a set of SCFGs [6].
All these approaches are using a seperate rescoring pass
with a dialog dependent language model over the speech
recognition output (n-best lists, lattices) that was pro-
duced with a common language model. In [7] a n-gram
based recognizer and a dialog-state specific finite state
grammar based recognizer are run in parallel, and the sys-
tems decides, whether the input sentence was in or out-of
grammar. Differences are also in the way the dialog con-
text is computed. This can be done e.g. by simply using
the parser output, by topic detection [8] or with the help
of semantic classification trees [9].

In contrast thereto, we are using a more integrated ap-
proach, where no separate rescoring is neccessary. The
information about the predicted dialog context for the
next user utterance is directly integrated into the next de-
coding step of a context-free grammar based speech rec-
ognizer. For predicting the dialog context, the already
parsed output of the speech recognizer is used.

2. Speech Recognition

For speech recognition we are using the Ibis decoder [10],
which was developed at the University of Karlsruhe as
part of our Janus Recognition Toolkit (JRTk) [11]. Be-
sides several other advantages over our old three-pass
search such as smaller memory usage and higher recog-
nition speed, Ibis allows us to decode along context-free



grammars in addition to the classical statistical n-gram
language models.

2.1. Context-Free Grammar Decoding

Using grammars instead of n-gram language models is
of advantage especially in small domains, such as our
household scenario. In such domains there is normally
little domain dependent data available for the training of
robust statistical n-gram language models.

Our context-free grammar implementation in Ibis
also has several other advantages. Rather than compiling
one network or a finite state graph out of the grammar de-
scription files, we use a more dynamic approach, where
several rule based recursive transition networks (RTNs)
are linked together by their non-terminal symbols. Dur-
ing decoding, a rule stack gives us the ability to enter or
leave the linked networks. This kind of network organi-
zation gives us high flexibilty when used in combination
with dialog managers. Furthermore, it gives us the ability
to work with real context-free grammars.

In most cases, we work with non-statistical seman-
tic grammars, i.e. each transition to the next word has
the same language model score, whereby terminals are
grouped to non-terminal symbols by their semantical
meaning.

3. Dialog Management

Our dialog manager Tapas is a recently developed collec-
tion of dialog processing and dialog management tools.
The dialog management algorithms are based on the ap-
proaches of the language and the domain independent di-
alog manager Ariadne [12]. Tapas inherits the features
from Ariadne and offers a tighter integration with the
speech recognizer. As Ariadne, Tapas is specifically tai-
lored for rapid prototyping because only the domain and
language dependent components have to be implemented
for new applications, whereas the general concepts are
already available and can be reused. Furthermore, possi-
bilities to evaluate the dialog state and general input and
output mechanisms are already implemented which can
then be applied in the actual application. For the domain-
dependent part, we have developed different kinds of re-
sources: An ontology, a specification of the dialog goals,
a data base, a context-free grammar and generation tem-
plates.

The user utterance is parsed by means of a context-
free grammar which is enhanced by information from
the ontology defining all the objects, tasks and proper-
ties about which the user can talk. After parsing, the
parse tree is converted into a semantic representation with
conversion rules. The dialog manager uses typed feature
structures [13] to represent semantic input and discourse
information. The semantic input is combined with the
already existing discourse information. Dialog goal rep-

resentations define the information that must be available
in the discourse to execute a dialog goal. More informa-
tion to disambiguate between different dialog goals and
to fullfill the requirements of the goal is obtained by exe-
cuting generation templates. These templates are selected
by the dialog strategy. They can query the user for the re-
quired information or execute any other dialog-controlled
action.

4. Tight Coupling of the Speech Recognizer
and Dialog Manager

Our goals for a tight coupling between a speech recog-
nizer and a dialog manager are to share as much informa-
tion between these two components as possible, to im-
prove speech recognition and hence system understand-
ing performance. Therefore, the implementations of Ibis
and Tapas allow us to share the linguistic knowledge
sources, i.e. context-free grammars, which gives us the
ability to use the results of one component directly for
improving the performance of the other component in the
next step.

Due to the fact, that Ibis uses linked RTNs for its
internal grammar representation, the original grammar
structure can be directly accessed, which has several ad-
vantages:

• Ibis can also be used as a parser for natural lan-
guage processing. Therefore, a separate parser is
superfluous. The recognized and parsed output can
be directly given to Tapas.

• Rules can be activated/deactivated or weighted (pe-
nalized) during run-time, which can be used, e.g.,
to restrict the decoding process to sub-grammar
parts only.

In our current human-machine interface implementa-
tion all the entry rules of the used grammars are divided
into two sets, a ResponseSet and a QuerySet. The Re-
sponseSet consists only of rules, which are less likely to
be used at the beginning of a dialog, i.e. consists mainly
of rules which cover all responses to clarification ques-
tions. The QuerySet contains all the rules which are most
likely used at the beginning of the dialog. Depending on
the current dialog context, Tapas decides which rules are
most likely used by the user for its next query/response
and gives this information to Ibis. At the beginning of
the dialog, all rules of the ResponseSet are penalized,
whereas during the dialog the specified set of rules out
of the ResponseSet given by Tapas are preferred over all
others. It should be emphasized that still other user inputs
can be recognized by Ibis which is conform to a mixed
initiative dialog system.

To improve the understanding performance, Ibis gives
an n-best list of parses to Tapas, instead of the first best



parse only. In the future we want to expand this by us-
ing parsed, i.e. semantically annotated lattices together
with confidences. To predict the next user input we are
using the missing discourse information to complete a di-
alog goal, together with the information if the dialog is
finalized or not.

5. Experimental Results

We compared the speech recognition results, i.e. the word
error rates (WER) and sentence error rates (SER), in the
domain of a household robot for a system which uses the
context dependent weighting of rules to one without it.
We used both, close and distant talking microphones, to
meassure the difference in performance gain by introduc-
ing the new methods. As mentioned above, the preferred
speech input for human-robot interfaces is distant speech.

Therefore, we collected a set of dialogs of different
speakers which consists of spontaneous speech queries
and responses to clarification questions from the robot.
For the distant data only one microphone at a distance
of about 2-3m from the speaker was used, which means
that no array processing could be done to improve the
speech recognition results. Given the parsed transcripts
of the pre-recorded dialogs, the dialog manager was used
to compute the preferred rules for the next user response
depending on the dialog context. The weighting parame-
ters for the grammar sets were optimized on a cross vali-
dation set. The details of the evaluation set and the gram-
mar size is given in Table 1.

Speakers 8
Sentences 646
User queries 346
User responses 300
Duration ∼21 min

CFG Rules 142
Entry Rules 47
ResponseSet size 32

Table 1: Details of the evaluation set and the context-free
grammar.

5.1. Acoustic Model

The acoustic model that we have used for our experi-
ments was trained on nearly 95hrs of close talking meet-
ing data mixed with 180hrs of Broadcast News data. It
is a slimmed down version of a system, which was used
in the NIST’s RT-04S evaluation [14]. It is a fully con-
tinous system consisting of 6000 codebooks with 185k
Gaussians over a 42-dimensional feature space based on
MFCCs after LDA and global STC transforms with utter-
ance based CMS. Incremental constrained MLLR is used
in decoding to compensate for different channels effects.

5.2. Results

In Table 2 the baseline results are reported. It can be
seen that the recognition results for the user responses are
worse than for the user queries. Especially for the distant
condition the WERs for the user responses are about 50%
worse than for the user queries. The sentence error rates
do not vary as much as the word error rates. The speech
recognizer runs for both, the close and the distant talking
condition in less than 0.5xRT on a 1.7GHz Pentium M,
so that there is enough room for other components of the
human-machine interface.

WER SER
User queries (C) 20.21% 34.10%
User responses (C) 30.28% 30.67%
Overall (C) 23.52% 32.51%

User queries (D) 30.53% 51.15%
User responses (D) 43.77% 43.62%
Overall (D) 34.86% 47.66%

Table 2: Close (C) and distance (D) talking word and
sentence error rates (baselines).

When using our context dependent grammar weight-
ing as described above it can be seen in Table 3 that there
is an overall reduction of the WER of 3.3% for the close
and 9.9% for the distant talking condition. Whereas there
is a smaller gain for the user queries, the user responses
are recognizd much better. It can also be seen, that the
relative improvement increases for the distant condition.

improvement
WER SER WER SER

Queries (C) 19.63% 33.53% 2.87% 1.67%
Responses (C) 29.11% 30.00% 3.86% 2.18%
Overall (C) 22.74% 31.89% 3.32% 1.91%

Queries (D) 28.81% 50.29% 5.63% 1.68%
Responses (D) 36.77% 39.60% 15.99% 9.22%
Overall (D) 31.41% 45.33% 9.90% 4.89%

Table 3: Close (C) and distant (D) talking word and sentence
error rates together with their relative improvements compared
to Table 2.

To analyse the influence of mis predicted grammar
rules which leads to a wrong grammar weighting, we re-
placed in1/3 of the test set the correct prediction by a
different one. As can be seen in Table 4 the relative im-
provement also goes down by nearly1/5, but we were
not otherwise penalized for the mis predictions.

6. Conclusions

We described a tight coupling of the speech recognizer
and the dialog manager for implementing a human-
machine interface. The tight coupling allows us to work



improvement
WER SER WER SER

Queries (C) 19.63% 33.53% 2.87% 1.67%
Responses (C) 29.93% 31.33% 1.16% -2.15%
Overall (C) 23.01% 32.51% 2.17% 0.00%

Queries (D) 29.10% 50.29% 4.68% 1.68%
Responses (D) 38.20% 40.27% 12.73% 7.68%
Overall (D) 32.07% 45.64% 8.00% 4.24%

Table 4: Close (C) and distant (D) talking word and sentence
error rates together with their relative improvements compared
to Table 2, with mis-predicted grammar rules

with the same semantic, non-statistical grammars in both,
the speech recognizer and the dialog manager, and makes
a separate parser superfluous. As a result of this tight cou-
pling and due to our flexible context-free grammar im-
plementation in our speech decoder the dialog manager
has the ability to control the search space of the recog-
nizer depending on the dialog context. This was done
by weighting specific entry rules in the semantic, non-
statistical grammars. This information can be directly
used for the next decoding step, so that a separate rescor-
ing pass is not neccessary.

In the domain of a household robot we compared the
speech recognition results of a system which uses the
context dependent weighting to one without it for close
and for distant speech input, which can be seen as the
more preferred speech input for human-robot interfaces.
We were able to reduce the overall word error rate of user
queries and responses by 3.3% relative for close talking
and 9.9% relative, when using distant speech input. The
sentence error rates were reduced by 1.9%, 4.9% respec-
tively. It can also be seen that the gain is larger for the
user respones than for the user queries.
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