
IJDAR (2001) 3: 169–180

Online handwriting recognition: the NPen++ recognizer
S. Jaeger1,2, S. Manke1,2, J. Reichert1,2, A. Waibel1,2

1 Interactive Systems Laboratories, University of Karlsruhe, Computer Science Department, 76128 Karlsruhe, Germany;
e-mail: stefan.jaegar@ira.uka.de

2 Interactive Systems Laboratories, Carnegie Mellon University, School of Computer Science, Pittsburgh, PA 15213-3890, USA

Received September 3, 2000 / Revised October 9, 2000

Abstract. This paper presents the online handwriting
recognition system NPen++ developed at the Univer-
sity of Karlsruhe and Carnegie Mellon University. The
NPen++ recognition engine is based on a multi-state
time delay neural network and yields recognition rates
from 96% for a 5,000 word dictionary to 93.4% on a
20,000 word dictionary and 91.2% for a 50,000 word dic-
tionary. The proposed tree search and pruning technique
reduces the search space considerably without losing too
much recognition performance compared to an exhaus-
tive search. This enables the NPen++ recognizer to be
run in real-time with large dictionaries. Initial recogni-
tion rates for whole sentences are promising and show
that the MS-TDNN architecture is suited to recogniz-
ing handwritten data ranging from single characters to
whole sentences.

Key words: Online handwriting recognition – Neural
networks – Pen-based computing – Pattern recognition
– Human-computer interaction

1 Introduction

Pen-based interfaces are becoming increasingly popular
and will play an important role in human-computer in-
teraction in the near future. A clear indication for this is
the advent of personal digital assistants, i.e., small hand-
held computers accepting pen-based input and combin-
ing agenda, address book, and telecommunication facil-
ities. These palm computers are widely-used pen-based
systems already.

Using a pen as an input device has several advan-
tages: while a pen is much easier to carry around, which
is a very important feature for small portable computers,
a pen can also take over many functions of a conventional
mouse. For instance, clicking and dragging are two basic
operations that a pen can perform just as well. One ma-
jor advantage of the pen over the mouse is the fact that

Correspondence to: S. Jaeger

a pen is a natural writing tool while the mouse is very
cumbersome when used as a writing tool.

However, the reliable transformation of handwritten
text into a coding that can be directly processed by a
computer, e.g., ASCII, is essential for the pen to be-
come a preferred input device. Handwriting needs reli-
able recognition rates to be accepted as an alternative
input modality.

This paper presents the online handwriting recogni-
tion system called NPen++ that is based on a multi-
state time delay neural network (MSTDNN). NPen++
yields recognition rates from 96% for a 5,000 word dic-
tionary to 93.4% on a 20,000 word dictionary and 91.2%
for a 50,000 word dictionary. The recognition times are
virtually independent of the size of the dictionary. In
this paper, the preprocessing steps, the computation of
features, the recognizer with training and testing, and
the dictionary-based search are described in detail. Sec-
tion 2 begins with the description of the preprocessing
steps in NPen++ that normalize the handwritten raw
data. Section 3 shows different features computed from
the normalized raw data. The core of the NPen++ recog-
nition engine; i.e., the MSTDNN, is presented in Sect. 4.
Training and recognizing are described in Sect. 5 and re-
sults for both word recognition and sentence recognition
are presented in Sect. 7. Section 6 describes the search
technique used in the NPen++ system for words and
sentences. Section 8 contains a summary that concludes
this paper.

2 Preprocessing

This section describes the preprocessing steps of
NPen++. Before features are derived from the hand-
written word, the raw data recorded by the hardware
goes through several preprocessing steps. Raw data for
the NPen++ system was collected with a sampling rate
of 200 points/s using Wacom graphic tablets (the opaque
SD-421E Tablet and the HD-648A Tablet with integrated
LCD screen), where only the pen-down segments were
recorded by the hardware.

170 S. Jaeger et al.: Online handwriting recognition: the NPen++ recognizer

Fig. 1. Preprocessing (overview)

The main objective of the preprocessing steps is to
normalize words and remove variations that would other-
wise complicate recognition. Typical variations are size,
slant, and rotation. These variations can provide impor-
tant hints in signature verification and writer identifica-
tion tasks, but they complicate handwriting recognition
in general.

While several preprocessing steps in NPen++ are
modeled on existing online handwriting recognition sys-
tems [4,7,20–22], some steps, such as context maps, are
unique in NPen++.

Figure 1 gives an overview of the preprocessing steps
of NPen++.

2.1 Computing baselines

Computing baselines is a main technique in handwriting
recognition and is implemented in several online as well
as offline (OCR) systems (e.g., [4,22]). Baselines are uti-
lized for many reasons, e.g., normalizing sizes, correcting
rotations, or deriving features. Many systems, including
NPen++, compute the following two lines:

– Baseline: The baseline corresponds to the original
writing line on which a word or text was written.

– Corpus line: The corpus line goes through the top
of lower case characters such as “n” or “w”.

In the approach described in this paper, however, we
compute two additional lines as described in [2]. The first
additional line goes through ascenders (tops of charac-
ters such as “E” or “l”) and the second line goes through
descenders (bottoms of characters such as “p” or “g”).
Figure 2 shows all four lines for the word “writing.”
Baselines are often computed using linear regression lines
that approximate the local minima (baseline) or the lo-
cal maxima (corpus line) of the trajectory [4,21,22]. In
the NPen++ system, however, all four lines are defined
as polynomials with degree 2:

Y = fi(x) = k (x − x0)2 + s (x − x0) + yi i = 1, . . . , 4

Fig. 2. Baselines

}h {h~Normalizing
Size

Fig. 3. Normalizing size

Fig. 4. Normalizing rotation

The parameters k, s, and x0 are shared among all four
curves, whereas each curve has its own vertical trans-
lation parameter yi. Parameter k denotes the curvature
and parameter s the rotation of all lines. All parameters
are determined by fitting a geometrical model to the pen
trajectory. This is accomplished using the Expectation-
Maximization algorithm (EM) [2,5]. Before applying the
EM step, parameters are initialized with values derived
from a simple linear regression to obtain a good seed for
the EM procedure. This technique is an advantage over
other methods, where baselines and corpus lines are com-
puted separately. In particular, computing corpus lines
is facilitated here by coupling them with baselines.

The next two preprocessing steps normalize size and
rotation by exploiting information about baselines and
corpus lines.

2.2 Normalizing size

The main goal of this preprocessing step is to ensure that
the same characters have approximately the same height
for every handwritten word. This is accomplished by
transforming every word to a given corpus height, where
the corpus height is the distance between the baseline
and the corpus line. Note that the total height of words
may still vary after normalizing size, even for words hav-
ing the same corpus height. Figure 3 shows the normal-
ization of the word “Clinton.”

2.3 Normalizing rotations

Rotations of words, i.e., deviations of the computed base-
line from the horizontal writing line, are corrected by
means of a Cartesian rotation that is based on the pa-
rameter s denoting the rotation of both lines. Figure 4
again shows the normalization of the word “Clinton.”

2.4 Interpolating missing points

If the distance between two neighboring points exceeds a
certain threshold, we interpolate the trajectory between

S. Jaeger et al.: Online handwriting recognition: the NPen++ recognizer 171

Fig. 5. Interpolating missing points using Bezier curves

Smoothing

Fig. 6. Smoothing

both points using a Bezier curve [1]. In order to do so, we
compute two additional points between both neighbor-
ing points and approximate all four points using a Bezier
curve [1]. The position of the additional points depends
on how the trajectory enters the first and leaves the sec-
ond neighbor. This preprocessing step may be necessary
in situations where the window-manager software is not
able to capture all points of the trajectory or cannot
catch up with the speed of writing. This preprocessing
step has only a minor impact on the recognition rates
reported in this paper. However, we have reduced error
rates by more than 15% using this preprocessing step
for some small subsets of data collected on a specific
pressure-sensitive hardware platform. Figure 5 presents
some examples before and after interpolating missing
points.

2.5 Smoothing

To remove jitter from the handwritten text, we replace
every point (x(t), y(t)) in the trajectory by the mean
value of its neighbors:

x′(t) =
x(t − N) + . . . + x(t − 1) + αx(t) + x(t + 1) + . . . + x(t + N)

2N + α

and

y′(t)=
y(t − N) + . . . + y(t − 1) + αy(t) + y(t + 1) + . . . + y(t + N)

2N + α
.

The parameter α is based on the angle subtended by the
preceding and succeeding curve segment of (x(t), y(t))
and is empirically optimized. This helps to avoid the
smoothing of sharp edges, which provide important in-
formation when there is a sudden change in direction.
The smoothed image of the word “Clinton” is depicted
in Fig. 6. In our experiments, smoothing has improved
our overall recognition rate by about 0.5%.

2.6 Normalizing slant

To normalize the different slants of words, we shear every
word according to its slant. The slant is determined by
a histogram over all angles subtended by the lines con-
necting two successive points of the trajectory and the
horizontal line. The computed angles are weighted with

Fig. 7. Normalizing slant

Resampling

Fig. 8. Resampling

the distance of every pair of successive points. A simple
search for the maximum entry in the histogram provides
us with the slant of the word [14,21]. Figure 7 shows the
normalization of slant for the word “Clinton.” Both the
histogram containing all computed angles and the nor-
malized word are shown in Fig. 7. Normalizing the slant
has improved our overall recognition rate by just under
1%. However, we have observed major improvements for
left-handed writers.

2.7 Computing equidistant points (Resampling)

This processing step is implemented in almost every on-
line handwriting recognition system. In general, the
points captured during writing are equidistant in time
but not in space. Hence, the number of captured points
varies depending on the velocity of writing and the hard-
ware used. To normalize the number of points, the se-
quence of captured points is replaced with a sequence
of points having the same spatial distance. In NPen++,
this distance is some fraction of the corpus height, which
has been empirically optimized. The optimal value found
in our experiments is h

13 , where h denotes the corpus
height. Figure 8 illustrates the resampling of points. We
have achieved major improvements of more than 5% ap-
plying this preprocessing step.

2.8 Removing delayed strokes

Delayed strokes, e.g., the crossing of a “t” or the dot of
an “i”, are a well-known problem in online handwriting
recognition. These strokes introduce additional temporal
variation and complicate online recognition because the
writing order of delayed strokes is not fixed and varies
between different writers. This stands in contrast to of-
fline recognition since delayed strokes do not occur in
static images. It is one of the reasons why there have
been approaches in the recent past trying to exploit of-
fline data in order to improve online recognition rates [11,
14]. Many online recognizers apply a simple technique to
cope with delayed strokes: they use heuristics for detect-
ing such strokes and remove them before proceeding with
feature computation and recognition. NPen++ handles

172 S. Jaeger et al.: Online handwriting recognition: the NPen++ recognizer

Fig. 9. Delayed strokes

delayed strokes the same way. A delayed stroke is usually
a short sequence written in the upper region of the writ-
ing pad, above already written parts of a word, and ac-
companied by a pen movement to the left. NPen++ uses
some simple threshold values for characterizing these fea-
tures of delayed strokes. Figure 9 illustrates some exam-
ples of delayed strokes and the corresponding trajectories
of the pen. Removing delayed strokes has improved our
overall recognition rate about 0.5%.

3 Computing features

There is no doubt that computing features is a very
important processing step in every online recognition
system. However, neither a standard method for com-
puting features nor a widely accepted feature set cur-
rently exists. In the NPen++ system, feature computa-
tion takes the normalized sequence of captured coordi-
nates (x(t), y(t)) as input and computes a sequence of
features along this trajectory, which is then directly put
into the recognizer. This section presents the features of
NPen++, some of which can already be found in the
literature and others which have been implemented in
NPen++ for the first time.

3.1 Vertical position

The vertical position of a point (x(t), y(t)) is the vertical
distance between y(t) and b(x(t)), where b(x(t)) is the
y-value of the baseline at time t. The vertical distance is
positive if (x(t), y(t)) is above the baseline and negative if
it is below. All distances are normalized with the corpus
height of the word [14].

3.2 Writing direction

The local writing direction at a point (x(t), y(t)) is de-
scribed using the cosine and sine [8]:

cos α(t) =
∆x(t)
∆s(t)

,

sin α(t) =
∆y(t)
∆s(t)

,

where ∆s(t), ∆x(t), and ∆y(t) are defined as follows:

∆s(t) =
√

∆x2(t) + ∆y2(t),

x(t+2), y(t+2)

x(t), y(t)

α
x(t+1), y(t+1)

β

x(t), y(t)

x(t+1), y(t+1)

x(t+2), y(t+2)
x(t-1), y(t-1)

x(t-2), y(t-2)x(t-2), y(t-2)

x(t-1), y(t-1)

a) Writing direction b) Curvature

Fig. 10. Writing direction and curvature

∆x(t) = x(t − 1) − x(t + 1),

∆y(t) = y(t − 1) − y(t + 1).

The angles involved in this computation are illustrated
in Fig. 10.

3.3 Curvature

The curvature at a point (x(t), y(t)) is represented by
the cosine and sine of the angle defined by the following
sequence of points [8]:

(x(t − 2), y(t − 2)), (x(t), y(t)), (x(t + 2), y(t + 2)).

This is again illustrated in Fig. 10. Strictly speaking, this
signal does not represent curvature but the angular dif-
ference signal. Curvature would be 1

r , of a circle touching
and partially fitting the curve, with radius r. Cosine and
sine can be computed using the values from the previous
Sect. 3.2:
cos β(t) = cos α(t − 1) ∗ cos α(t + 1)

+ sinα(t − 1) ∗ sinα(t + 1),
sinβ(t) = cos α(t − 1) ∗ sinα(t + 1)

− sinα(t − 1) ∗ cos α(t + 1).

3.4 Pen-up/pen-down

The pen-up/pen-down feature is a binary feature indi-
cating whether the pen has contact with the writing pad
at time t or not. Invisible parts of the trajectory, where
the pen has no contact with the pad, are linearly inter-
polated in NPen++, i.e., a pen-up is connected with the
next pen-down by a straight line. Note that the pen-
up/pen-down information is dependent on the position-
sensing device. Electromagnetic systems are able to re-
turn approximate planar positions while the pen is in
the air, whereas pressure-sensitive technologies cannot.
Since the NPen++ system does not exploit information
about pen-up segments, this distinction has no effect on
its features.

3.5 “Hat”-feature

This is a binary feature that indicates whether the cur-
rent position is below a delayed stroke, e.g., below a
t-stroke [21]. It is the only information about delayed
strokes for the NPen++ system. Note that NPen++ de-
tects and deletes delayed strokes using a simple heuristic
(see Sect. 2).

S. Jaeger et al.: Online handwriting recognition: the NPen++ recognizer 173

(x(t), y(t))

Δ y(t)

α (t)

Δx(t)

li

di

Fig. 11. Aspect

3.6 Aspect

The aspect of the trajectory in the vicinity of a point
(x(t), y(t)) is described by a single value A(t) [21]:

A(t) =
∆y(t) − ∆x(t)
∆y(t) + ∆x(t)

It characterizes the height-to-width ratio of the bound-
ing box containing the preceding and succeeding points
of (x(t), y(t)). Figure 11 illustrates the computation of
the aspect. The vicinity of a point (x(t), y(t)) shown in
Fig. 11 is also used to define the following three features:
curliness, linearity, and slope, which describe the shape
of the trajectory in the vicinity of (x(t), y(t)).

3.7 Curliness

Curliness C(t) is a feature that describes the deviation
from a straight line in the vicinity of (x(t), y(t)) (Fig. 11).
It is based on the ratio of the length of the trajectory
and the maximum side of the bounding box:

C(t) =
L(t)

max(∆x, ∆y)
− 2,

where L(t) denotes the length of the trajectory in the
vicinity of (x(t), y(t)), i.e., the sum of lengths of all line
segments. ∆xand ∆yare the width and height of the
bounding box containing all points in the vicinity of
(x(t), y(t)) (see Fig. 11). According to this definition, the
values of curliness are in the range [−1;N −3]. However,
values greater than 1 are rare in practice.

3.8 Linearity

The average square distance between every point in the
vicinity of (x(t), y(t)) and the straight line joining the
first and last point in this vicinity is called linearity,
which is defined as follows:

LN(t) =
1
N

∗
∑

i

d2
i .

x-d~ ~x+d

Σ

(x(t), y(t))~~

} b

} b

Ascenders

Descenders

Fig. 12. Ascenders and descenders

3.9 Slope

The slope of the straight line joining the first and last
point in the vicinity of (x(t), y(t)) is described by the
cosine of its angle α (see Fig. 11).

The next two features are global features that con-
sider a wider temporal context, i.e., not only the vicin-
ity of a point (x(t), y(t)). These features can be seen as
an approach to incorporate additional information about
the offline image into the feature vector.

3.10 Ascenders/descenders

These two features count the number of points above
the corpus line (ascenders) and the number of points
below the baseline (descenders) in the word image at a
given time instance t. Only points falling into a local re-
gion determined by the x-coordinate of the current point
(x(t), y(t)), i.e., only points in the word image that have
an x-coordinate x satisfying x(t) − d < x < x(t) + d,
are considered to be part of ascenders or descenders at
time t. Additionally, points must have a minimum dis-
tance to both lines to be considered as part of ascenders
or descenders. This ensures that inaccurately computed
baselines have only a minor impact on the computation
of these features. Both features are computed by simply
counting the number of these points, where every point
is weighted with its distance to the corpus line (ascen-
ders) or baseline (descenders). Figure 12 illustrates the
computation of both features. The main idea of these fea-
tures is to help identifying specific characters, like “t” or
“g”.

3.11 Context maps

A context map is an offline, gray-scale image B = b(i, j)
of the vicinity of a point (x(t), y(t)), where b(i, j) is the
number of points of the trajectory falling into pixel (i, j).
In particular, a context map is a low-resolution image
with the pixel in the center containing (x(t), y(t)). The
size of the context map depends on the corpus height of
the word. In our experiments, we have transformed the
computed map into a 3 × 3 map before adding it to the
feature vector [15]. Figure 13 shows the computation of
context maps on a gray-scale representation computed
for the word “Clinton” and the transformation to 3 × 3

174 S. Jaeger et al.: Online handwriting recognition: the NPen++ recognizer

9 x 9

3 x 3

a) Generating a sequence of Context Maps

b) Scaling of Context Maps

Fig. 13. Context maps

maps. Every pixel of a context map is a feature and thus
added to the set of features described above. The main
idea of context maps is to add features that consider a
wider context. Context maps allow us to capture infor-
mation about parts of the trajectory that are in the spa-
tial vicinity of a point (x(t), y(t)) but have a long time
distance to this point. Context maps are an example of
combining offline and online information in handwriting
recognition. This is an interesting research topic, which
has been investigated by several researchers in the recent
past (see [3,6,11,13–15] for more details).

As to the relevance of local and global features, we
have made the following experiments for a 20, 000 word
dictionary: We have achieved recognition rates about
90% when taking only the following small subset of local
features for training: vertical position, writing direction,
curvature, and pen-up/pen-down information. The over-
all recognition rate of a system trained only with local
features is 2% higher compared to a system trained with
global features only. The performance of global features
without any local features involved in the training, how-
ever, is close to the best overall performance. Neverthe-
less, optimal performance has been achieved by combin-
ing both local and global features into a single feature
vector.

4 Multi-state time delay neural networks
(MS-TDNN)

The core recognition engine of NPen++ is a MS-TDNN.
A MS-TDNN is a connectionist recognizer that inte-
grates recognition and segmentation into a single net-
work architecture. This architecture was originally pro-
posed for continuous-speech recognition tasks [10,16,23].
We adopted this technique, including the training proce-
dure described in the next section, and have applied it to
the handwriting recognition problem. The MS-TDNN is
an extension of the time delay neural network (TDNN)
[23], which has been applied successfully to online single
character recognition tasks. The main feature of a TDNN
is its time-shift invariant architecture, i.e., a TDNN is
able to recognize a pattern independently of its posi-
tion in time. The MS-TDNN combines the high accu-
racy character recognition capabilities of a TDNN with

1
2
0
1
2
0
1
2

0

0

0

1

1

2

2

z
z
z

a a
a
b
b
b
c
c
c

a
a
a

a
...

...

...

c
b
a

z

b

c

Σ

Y

Y

Y

E

V

Z

Y

Y

A

M

Input
layer

Hidden
layer

State
layer

Character
models

Output
layer

Fig. 14. The architecture of a multi-state time delay neural
network

a nonlinear time alignment procedure to find an opti-
mal alignment between strokes and characters in hand-
written words [9,10,14]. Thus, the MS-TDNN is capa-
ble of recognizing words by integrating a dynamic time-
warping algorithm (DTW) into the TDNN architecture.
In MS-TDNNs, words are represented as a sequence of
characters with each character being modeled by one or
more states. In the experiments reported in this paper,
each character is modeled with three states representing
the first, middle, and last part of the character. Hence,
the MS-TDNN can be regarded as a hybrid recognizer
that combines features of both neural networks and hid-
den Markov models (HMMs). Figure 14 shows the basic
architecture of the MS-TDNN. The first three layers,
which are respectively called input layer, hidden layer,
and state layer, constitute a TDNN. The input layer con-
sists of the set of feature vectors computed for every time
instance t. A sliding window moving from left to right in-
tegrates several neighboring input vectors into activation
vectors in the hidden layer, which in turn are integrated
by a sliding window into activation vectors in the state
layer. The width of the sliding windows is a parameter of
the MS-TDNN architecture. Every element (“neuron”)
in the state layer represents a state of a character in
the alphabet (see Fig. 14). In single character recogni-
tion, the score for a character is computed by finding an
optimal alignment path through its states and summing
the activations along this path. In word recognition, the
score of a word is computed by finding an optimal align-

S. Jaeger et al.: Online handwriting recognition: the NPen++ recognizer 175

C0
C1
C2
l0
l1
l2
i0
i1
i2
n0
n1
n2
t0
t1
t2
o0
o1
o2
n0
n1
n2

Fig. 15. Optimal alignment path through the word “Clin-
ton” (1)

o
t
n
i
l
C

n

lC i n not
Fig. 16. Optimal alignment path through the word “Clin-
ton” (2)

Words Words

Training

Training data

segmented unsegmented

word levelstate level
Training at Training at

character level
Training at

Fig. 17. Training of a multi-state time delay neural network

ment path through the states of characters composing
the word. The final score is again derived by summing
all activations along this path. Figure 15 and 16 illustrate
the computation of the optimal alignment path through
the word “Clinton”, where dark squares indicate highly
activated states.

5 Training

The MS-TDNN is trained in three steps with back-pro-
pagation. Figure 17 shows a schematic diagram of the
training procedure. The first and second training step
operate in a forced alignment mode, during which the
MS-TDNN is trained with hand-segmented training
data, i.e., the character boundaries are known for these
words. In the first step (training at state level), it is as-
sumed that the Viterbi path remains for the same dura-
tion in every state of a character belonging to a word of
the training set. The states along this Viterbi path con-
stitute the training data for the back-propagation pro-
cedure starting at the state layer of the MS-TDNN. Fig-
ure 18 shows this first step of training. After some itera-

si
si+1si+2 ...

...

1/3 1/31/3
Fig. 18. Forced alignment with equal durations for each state

si
si+1si+2 ...

...

Fig. 19. Forced alignment together with the Viterbi algo-
rithm

tions, the assumption that the Viterbi path remains for
the same duration in every state is abandoned in favor of
computing the actual Viterbi path through a character
model, which marks the beginning of Step 2 (training
at character level). This is shown in Fig. 19. Then, af-
ter some iterations, the third step commences by replac-
ing the forced alignment in Step 1 and Step 2 with the
free alignment provided by the Viterbi algorithm (train-
ing at word level). This has the advantage that train-
ing can now be performed on unsegmented data. Thus,
only a small part of the training data needs to be la-
beled manually with character boundaries, as required
by the first and second step. When the network has suc-
cessfully learned character boundaries on the small seg-
mented training set, the forced alignment is replaced by
a free alignment and training can be performed on large
databases containing unsegmented training data.

This mechanism also works for the next level in the
hierarchy: whole sentences. We have trained unseg-
mented sentences with a MS-TDNN that was already
pre-trained with single words. The Viterbi algorithm
finds the best segmentation of all unsegmented sentences
based on the information the neural net already learned
on the word level. Our first results with this technique
on the sentence level are presented in Sect.7.

In our experiments, we used the cross entropy for
propagating the error ECE back in the MS-TDNN [14]:

ECE = −
∑

j

[dj log(yj) + (1 − dj) log(1 − yj)],

where yj is the output of unit j and dj is the teaching
input for unit j.

6 Search technique

The NPen++ online handwriting recognition system is
based on a dictionary determining the set of recognizable
words. In general, the size of the dictionary influences
both the recognition performance and response time of
a dictionary-based recognizer, and thus has an effect
on the degree of user acceptance. NPen++ supplements
the MS-TDNN approach with a tree-based search engine
[17]. It combines a tree representation of the dictionary

176 S. Jaeger et al.: Online handwriting recognition: the NPen++ recognizer

a

b
l

c

d

e

n

o

a

e

a

i f

b

...
...

z

A

Z

e

internal nodes

end nodes

root node

Fig. 20. Tree representation of a dictionary

with efficient pruning techniques to reduce the search
space without losing much recognition performance com-
pared to a flat exhaustive search through all words in the
dictionary. A search tree is built for every character rep-
resenting all words starting with this specific character.
The nodes in every tree are HMMs representing indi-
vidual characters. Every tree contains distinguished end
nodes. A path from the root of a tree to a distinguished
end node is a sequence of HMMs describing an entry of
the dictionary. Figure 20 shows a dictionary represented
as a tree. In order to achieve real-time performance for
very large dictionaries, NPen++ does not attempt to
apply the exact Viterbi algorithm. Instead, NPen++ in-
troduces the concept of active and inactive HMMs and
defines a set of pruning rules which specify when to turn
on an inactive HMM and when to turn off an active one.
Every HMM-node in the tree can be marked as being
either active or inactive. When the search is initialized
only the roots of the trees are turned on whereas all other
nodes are set to be inactive. There are two lists whose
elements are pointing to active nodes: the first list points
to the nodes active in the current frame and the second
list is used to gather pointers to those nodes which are
expected to be active in the next frame. Based on these
two lists, the search algorithm goes for each frame, i.e.,
feature vector, through the following three steps:

– Evaluation: For every active hidden Markov model
a Viterbi step is computed to find the accumulated
scores sij for the next frame, where sij is the score
at state j in node i. The best state scores ŝi within
every node and the best score ŝ = max ŝi over all
evaluated models are computed.

– Pruning: Turn off all currently active nodes in the
search tree where the following pruning criterion is
fulfilled:

ŝi < ŝ − beam

end nodes

internal nodes

a

b
l

c

d

e

n

o

a

e

a

i f

b

...
z

A

Z

e

...

root node

word transition

SPACE

Fig. 21. Tree representation for recognizing sentences

That means that all nodes whose best accumulated
score is below a certain threshold, called beam, will
become inactive in the next frame.

– Expansion: For every active node in the current
frame, test whether a transition from the last state
of the model i to the first state of any child HMM
j leads to a higher accumulated score sj0 in the first
state of that model. If that holds and the new score is
above the pruning threshold, the HMM j is marked
to be active in the next frame. Go to step 1.

The tree search with pruning is about 15 times faster
than a flat search and allows us to run the recognizer
in real-time with large dictionary sizes. Moreover, the
run-time is virtually independent of the dictionary size.
In practical applications, we can adjust the beam size to
find a good compromise between recognition accuracy
and speed, as will be shown in the next section.

Figure 21 shows how we can easily extend the tree
structure in Fig. 20 in order to recognize whole sentences.
We insert an additional node that represents the white
space between two words within a sentence. Every end
node of the tree is connected with this node, which in
turn is connected with every root node. Thus, the traver-
sal of this node marks the beginning of a new word. Real-
izing this feedback by connecting end nodes directly with
root nodes did not perform well in our experiments, so
we decided to represent white spaces explicitly using this
node. Recognizing sentences requires only minor modi-
fications of the search algorithm and the training of the
MS-TDNN. In particular, a new state representing the
new node in the search tree is added to the state layer of
the MS-TDNN, i.e., the representation of spaces consists
of a single state in the state layer. In addition, we have
added an additional feature to the feature set described
in Sect. 3 that helps training this state. We compute this
feature using a simple heuristic that detects white spaces
between words: a space between words is said to be ac-
companied by a pen-up and moving the pen to the right.

S. Jaeger et al.: Online handwriting recognition: the NPen++ recognizer 177

For a sequence of pen-downs, the new feature is always
0. However, for the first pen-down encountered after a
pen-up, it is higher the more the pen has moved to the
right.

The next section also presents our first results for
recognizing sentences.

7 Evaluation

This section describes the practical experiments we car-
ried out and presents the recognition rates and recogni-
tion times of our system [14]. Section 7.1 describes the
chosen design parameters of the MS-TDNN and the data
we used for testing. Section 7.4 provides the recognition
rates achieved.

7.1 Network architecture

The number of input units (“input neurons”) is identical
to the number of features described in Sect. 3. Hence, the
input layer of the NPen++ recognizer contains 22 input
units, one for each feature. The number of units in the
state layer is determined by the number of characters in
the alphabet and the number of states in the statistical
model of each character. Since we want to recognize the
Latin characters (small and capital ones) and model each
character using three states, we have 26 ∗ 2 ∗ 3 = 156
states in the state layer. The number of hidden units was
empirically set to 120. The widths of the sliding windows
in the input layer and the hidden layer are set to 7. While
the time shift of the window in the hidden layer is 1, the
window in the input layer is moved two frames to the
right at every cycle. This ensures that the hidden layer
is about half as long as the input layer, which reduces
computational costs.

7.2 Dictionaries

In our experiments, dictionaries were compiled by ex-
tracting the most likely words from the Wall Street Jour-
nal Continuous Speech Recognition Corpus of the Lin-
guistic Data Consortium. For instance, a 20, 000word
dictionary would contain the most likely 20, 000words
from the Wall Street Corpus and would contain any
smaller dictionary derived from this corpus in that way.

7.3 Datasets

We used three different databases for training and test-
ing: the CMU database collected at Carnegie Mellon
University, the UKA database compiled at the Univer-
sity of Karlsruhe, and the MIT database from the Mas-
sachusetts Institute of Technology [14]. While the CMU
and the UKA databases contain printed and cursive
handwriting data, the MIT database only contains
printed data, where mixed styles are considered cursive.
In addition, the CMU database contains whole sentences.

Table 1. Data sets

Data set Printed Cursive
Writer #Words # Writer #Words

UKA - training 18 2313 70 3230
UKA - test 5 314 21 1085
CMU - training 39 2020 126 9308
CMU - test 15 347 35 900
MIT - training 119 6307 0 0
MIT - test 40 2120 0 0

Table 2. Sentences of the CMU database

Writer # Sentences # Words
CMU - training 163 1757 13221
CMU - test 50 161 2322

The major part of these data were written by students
at their respective institutes.

The UKA and CMU databases were collected using a
Wacom graphic tablet(SD-421E) with a sampling rate of
200 points/s. While part of this data was written directly
on the tablet, a substantial part was written with an ink
pen on paper lying on the tablet. Collecting the former
data requires writers to look at the monitor while writ-
ing on the tablet to see the graphically emulated inking.
Thus, the latter data can be considered more natural.
Instructions to the writers were reduced to a minimum
to guarantee the most natural way of writing. This also
ensures that the number of collected printed and cur-
sive styles reflects their true proportion in practice. The
MIT databases was compiled using a Wacom tablet(HD-
648A) with an integrated LCD screen and the same sam-
pling rate as in the UKA and CMU databases. Hence,
this data can also be considered very natural.

In brief, the collected data covers a wide range of na-
tional peculiarities collected by several position-sensing
devices. Almost 500 writers wrote just under 30,000
words. Table 1 gives an overview over all three databases,
the data they contain, and the division into training sets
and test sets. Table 2 shows the number of sentences
contained in the CMU database and their division into
training and test set. A detailed description of these data
sets is given in [14].

Since we need some hand-segmented data to start
training (see Sect. 5), we have explicitly segmented 4, 000
cursive words from the UKA database and 2, 000-cursive
words from the CMU database by visual inspection.

7.4 Recognition results

Figure 22 shows the recognition rates of NPen++ on
different data sets using several dictionaries. NPen++
achieves recognition rates of 96% for a 5,000 word dic-
tionary when it is trained with printed as well as cursive
data from all three databases. The error rate for this
completely trained system approximately doubles when
the ten-times larger 50, 000word dictionary is used in-

178 S. Jaeger et al.: Online handwriting recognition: the NPen++ recognizer

86

88

90

92

94

96

98

100

5K 10K 20K 50K

%
 R

ec
og

ni
tio

n
Ra

te

Dictionary

UKA (PRINTED)
UKA (CURSIVE)
CMU (PRINTED)
CMU (CURSIVE)

MIT (PRINTED)
All

Fig. 22. Recognition rates achieved by NPen++

stead. The recognition rate is 91.2% for a dictionary of
this size.

Figure 22 shows the recognition rates when NPen++
is trained with training sets from all databases and tested
separately for each database and each writing style using
the test subsets given in Table 1. As one would expect,
the recognition rates for printed data are higher than the
recognition rates for cursive data.

In our experiments, we have observed that the er-
ror rate for the completely trained system increases by
more than 1% on the 20, 000word dictionary when con-
text maps are excluded from the feature set, as compared
to the rate shown in Fig. 22.

In order to evaluate the performance of NPen++ for
sentences, we have computed the word accuracy for every
test sentence. Word accuracy (WA) is based on the edit
distance E, i.e., the smallest number of insertions, dele-
tions, and replacements necessary to transform a word
sequence into another:

WA =
N − E

N
,

where N is the number of words in the test sentence. The
average word accuracy measured on the 20, 000 word dic-
tionary is more than 81% for recognizing sentences with-
out any language model. In our first experiments with
language models, which show great promise, we have
been able to increase this word accuracy to more than
86% using delayed bigrams as they are used for con-
tinuous speech recognition [18]. Note that NPen++ is
among the first online handwriting recognition systems
that allow recognition of whole sentences with a neural
network architecture and are not exclusively based on
hidden Markov models [19].

Figures 23 and 24 illustrate the tradeoff between rec-
ognition time and recognition accuracy measured on the
20, 000word dictionary for the completely trained word
recognizer. Figure 23 shows the recognition times de-
pending on the width of the beam b (see Sect. 6). The
rightmost column shows the recognition time for the flat
search with no pruning. The column on its left-hand side
shows the recognition time for the tree search with an
indefinite beam width, i.e., no pruning. Since tree search
requires some bookkeeping during its computation, the

0

1

2

3

4

5

6

7

8

9

0 25 50 75 100 150 200 Max Flat
Search

Se
co

nd
s/

W
or

d

Beam Width

Fig. 23. Recognition times

40

50

60

70

80

90

100

0 25 50 75 100 150 200 Max Flat
Search

%
 R

ec
og

ni
tio

n
R

at
e

Beam Width

Fig. 24. Recognition rates

recognition time is slightly higher than the time for the
flat search. With shrinking beam size, however, recogni-
tion times rapidly decrease. All recognition times were
measured on a PC containing a 200MHz Pentium pro-
cessor and 64MB SDRAM.

Figure 24 shows the recognition rates depending on
the width of the beam. It can be seen that the recognition
rates remain almost constant for beam widths equal to
or higher than 50. Hence, we can considerably reduce
recognition time without losing recognition performance
by simply reducing the beam width. A beam width of
b = 75 or b = 50 would be an appropriate choice for
interactive applications of NPen++.

8 Summary and conclusion

In this paper, we have presented the online handwrit-
ing recognition system NPen++ based on a MS-TDNN,
a hybrid architecture combining features of neural net-
works and hidden Markov models. Two main features of
a MS-TDNN are its time-shift invariant architecture and
the nonlinear time alignment procedure.

Preprocessing in NPen++ is guided by the appli-
cation of well-known techniques in handwriting recog-
nition. In particular, the following preprocessing steps
are accomplished in NPen++: computing baselines, nor-
malizing size, correcting rotations, interpolating missing

S. Jaeger et al.: Online handwriting recognition: the NPen++ recognizer 179

points, smoothing, normalizing slant, computing equidis-
tant points (resampling), and removing delayed strokes.

The set of features computed in NPen++ integrates
local as well as global information about the trajectory
of the pen. While local features describe the shape of the
trajectory at a certain time instance, global features deal
with spatial information covering a wider time context.
NPen++ considers both types of information important.
The following local and global features are computed in
NPen++: vertical position, writing direction, curvature,
pen-up/pen-down, “hat”-feature, aspect, curliness, lin-
earity, slope, ascenders/descenders, and context maps.

Context maps are a new approach combining global
offline features with local online information. They pro-
vide additional spatial information about parts of the
trajectory that can have a long time distance to each
other. Context maps increase overall recognition rates
about 1%. However, one disadvantage of context maps
is that they increase the size of feature vectors by more
than 50%, which in turn increases the complexity of
the neural network. Nevertheless, we think that context
maps are an important approach for incorporating online
as well as offline recognition, which goes beyond combin-
ing two separate online and offline recognizers.

NPen++ uses an efficient tree search and pruning
technique to ensure real-time performance for very large
dictionary sizes. The recognition rates reported in this
paper range from 96% for a 5,000 word dictionary to
91.2% for a 50,000 word dictionary. Hence, it is justified
to say that NPen++ is a successful example of transfer-
ing the MS-TDNN from the speech-recognition domain
to the handwriting-recognition task. Moreover, the MS-
TDNN is a powerful architecture that allows training
and recognition of the whole hierarchy of handwritten
data ranging from single characters to whole sentences.

We suppose that transfering the main techniques of
NPen++ to other languages, such as Russian, Greek,
or Arabic, requires only slight modifications within the
NPen++ system. For Asian languages, however, some
major changes will be necessary due to the different
structure of these languages. For instance, the baselines
computed by NPen++ will not work for languages such
as Chinese or Japanese. Since an Asian character resem-
bles a Latin word in terms of complexity, the optimal
number of states representing a character will presum-
ably be different from the number of states in western
writings. In practical experiments, we have achieved the
optimal performance of the completely trained NPen++
system when we used three states. However, we have ob-
served some slight improvements with four or even five
states for some smaller subsets of our three databases.

A possible improvement that we have not utilized
in NPen++ are context-dependent states, which are al-
ready used in speech recognition [12]. Representing dif-
ferent writing styles, such as printed and cursive styles,
using separate models could also be a potential improve-
ment of NPen++, which deserves future research.

In principle, the basic architecture of NPen++ allows
run-on recognition, i.e., recognizing parts of the trajec-
tory during writing. However, run-on recognition may
require modifications within some preprocessing steps.

In particular, baselines computed during the beginning
of the trajectory will be unreliable due to the insufficient
number of local maxima or minima.

The NPen++ system presented can be easily exten-
ded to enable recognition of complete sentences. In order
to so, we have embedded the tree search in a feedback
loop joining the output of the tree structure with the
root nodes via an additional state representing spaces be-
tween words. Our first experiments with sentence recog-
nition have been very encouraging. Nevertheless, these
experiments are still in an early stage and there is much
room for improvement. Most importantly, the investi-
gation of more elaborate language models, such as tri-
grams, should be the next major step.

References

1. S. Abramowski, H. Müller.: Geometrisches Modellieren
(in German), vol. 75 of Reihe Informatik. BI, Mannheim
Wien Zürich, 1991

2. Y. Bengio, Y.L. Cun.: Word Normalization for On-Line
Handwritten Word Recognition. In: Proc. Int. Conf. on
Pattern Recognition, pp. 409–413, 1994

3. G. Boccignone, A. Chianese, L.P. Cordella, A. Marcelli.:
Recovering Dynamic Information from Static Handwrit-
ing. Pattern Recognition, 26(3): 409–418, 1993

4. T. Caesar, J.M. Gloger, E. Mandler.: Preprocessing and
Feature Extraction for a Handwriting Recognition Sys-
tem. In: 2nd IAPR Int. Conf. on Document Analysis and
Recognition, pp. 408–411, Tsukuba, Japan, 1993

5. A.P. Dempster, N.M. Laird, D.B. Rubin.: Maximum
Likelihood from Incomplete Data via the EM Algorithm.
J. R. Stat. Soc., 39: 1–38, 1977

6. D.S. Doermann, A. Rosenfeld.: Recovery of Temporal
Information from Static Images of Handwriting. Int. J.
Comput. Vision, 15: 143–164, 1995

7. J.G.A. Dolfing, R. Haeb-Umbach.: Signal Representa-
tions for Hidden Markov Model Based On-Line Hand-
writing Recognition. In: Proc. IEEE Int. Conf. on Acous-
tics, Speech, and Signal Processing, Munich, 1997

8. I. Guyon, P. Albrecht, Y. Le Cun, J. Denker, W. Hub-
bard.: Design of a Neural Network Character Recognizer
for a Touch Terminal. Pattern Recognition, 24(2): 105–
119, 1991

9. H. Hild.: Buchstabiererkennung mit neuronalen Netzen
in Auskunftssystemen (in German). PhD thesis, Univer-
sity of Karlsruhe, 1997. Shaker, Germany

10. H. Hild, A. Waibel.: Speaker-Independent Connected
Letter Recognition with a Multi-State Time Delay Neu-
ral Network. In: 3rd European Conf. on Speech, Com-
munication and Technology (EUROSPEECH), vol. 2, pp.
1481–1484, Berlin, 1993

11. S. Jaeger.: Recovering Dynamic Information from Static,
Handwritten Word Images. PhD thesis, University of
Freiburg, 1998. Foelbach, Germany

12. A. Kosmala, J. Rottland, G. Rigoll.: An Investigation
of the Use of Trigraphs for Large Vocabulary Cursive
Handwriting Recognition. In: Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, Munich, 1997

13. P.M. Lallican, C. Viard-Gaudin.: A Kalman Approach
for Stroke Order Recovering from Off-line Handwriting.
In: 4th Int. Conf. on Document Analysis and Recognition
(ICDAR), pp. 519–522, 1997

180 S. Jaeger et al.: Online handwriting recognition: the NPen++ recognizer

14. S. Manke.: On-line Erkennung kursiver Handschrift bei
grossen Vokabularen (in German). PhD thesis, Univer-
sity of Karlsruhe, 1998. Shaker, Germany

15. S. Manke, M. Finke, A. Waibel.: Combining Bitmaps
with Dynamic Writing Information for On-Line Hand-
writing Recognition. In: Proc. 12th Int. Conf. on Pattern
Recognition, pp. 596–598, 1994

16. S. Manke, M. Finke, A. Waibel.: NPen++: A Writer
Independent, Large Vocabulary On-Line Cursive Hand-
writing Recognition System. In: Proc. Int. Conf. on Doc-
ument Analysis and Recognition (Montreal/Canada),
1995

17. S. Manke, M. Finke, A. Waibel.: A Fast Search Tech-
nique for Large Vocabulary On-Line Handwriting Recog-
nition. In: Int. Workshop on Frontiers in Handwriting
Recognition (IWFHR), Colchester, 1996

18. S. Ortmanns, H. Ney, X. Aubert.: A Word Graph Algo-
rithm for Large Vocabulary Continuous Speech Recogni-
tion. Comput. Speech Lang., 11: 43–72, 1997

19. E.H. Ratzlaff, K.S. Nathan, H. Maruyama.: Search Issues
in the IBM Large Vocabulary Unconstrained Handwrit-
ing Recognizer. In: Proc. Int. Workshop on Frontiers in
Handwriting Recognition, Colchester, UK, 1996

20. M. Schenkel, I. Guyon, D. Henderson.: On-Line Cur-
sive Script Recognition Using Time Delay Neural Net-
works and Hidden Markov Models. In: Proc. Int. Conf.
on Acoustics, Speech, and Signal Processing, Adelaide,
1994

21. M.E. Schenkel.: Handwriting Recognition Using Neural
Networks and Hidden Markov Models, volume 45 of Se-
ries in Microelectronics. Hartung-Gorre, Konstanz, 1995

22. G. Seni.: Large Vocabulary Recognition of On-Line
Handwritten Cursive Words. PhD thesis, Department of
Computer Science of the State University of New York
at Buffalo, N.Y., USA, 1995

23. A. Waibel, T. Hanazawa, G. Hinton, K. Shiano, K. Lang.:
Phoneme Recognition Using Time-Delay Neural Net-
works. In: IEEE Trans. on Acoustics, Speech, and Signal
Processing, pp. 328–339, 1989

Stefan Jaeger was born in Trier,
Germany, on June 23, 1967. He
graduated from the University of
Kaiserslautern, Germany, in Com-
puter Science in 1994 and received
his Ph.D. degree in Computer Sci-
ence from Albert-Ludwigs Univer-
sity, Freiburg, Germany, in 1998.
From 1994 to 1998 he worked as
a Ph.D. student at the Daimler-
Benz Research Center Ulm, Ger-
many, where he was engaged in

off-line cursive handwriting recognition for postal mail sort-
ing. In 1998 he joined the Interactive Systems Laboratories
located at Carnegie Mellon University, Pittsburgh, USA, and
at the University of Karlsruhe, Germany, where he was a
member of the Computer Science Research Staff and respon-
sible for on-line handwriting recognition and pen-computing.
He is currently working as an Invited Research Scientist at
the Department of Computer, Information, and Communica-
tion Sciences at Tokyo University of A&T, Japan. His Ph.D.
thesis addressed the problem of recovering dynamic informa-
tion from static, handwritten word images, and was awarded
the Dissertation Prize from the German Research Centers for

Artificial Intelligence in 1999. His current research interests
include handwriting recognition, pen-based interfaces, archi-
tectures for cognition and perception, and machine learning.

Stefan Manke was born in Ger-
many in 1966. He received the
diploma and Ph.D. degree in
Computer Science in 1991 and
1998 from the University of Karl-
sruhe, Germany. His Ph.D. the-
sis laid the foundations of the
NPen++ system and dealt with
recognizing handwritten cursive
script for large vocabularies. Since
1998 he has been with the TLC
Company, the systems house of
the German Federal Railway,
where he is currently Systems En-

gineer for Inter- and Intranet Applications.

Juergen Reichert received his
diploma in computer science from
the University of Karlsruhe, Ger-
many, in 1998. He is currently
working as a Ph.D. candidate at
the Interactive Systems Laborato-
ries located at Carnegie Mellon
University in Pittsburgh and at
the University of Karlsruhe in
Germany. His research interests
include handwriting recognition,
speech recognition, machine
translation, multi modal user in-

terfaces, and artificial intelligence.

Alex Waibel is a Professor of
Computer Science at Carnegie
Mellon University, Pittsburgh and
at the University of Karlsruhe
(Germany). He directs the Inter-
active Systems Laboratories at
both Universities with research
emphasis in speech recognition,
handwriting recognition, language
processing, speech translation,
machine learning and multimodal
and multimedia interfaces. At
Carnegie Mellon, he also serves as

Associate Director of the Language Technology Institute and
as Director of the Language Technology PhD program. He
was also one of the founding members of the CMU’s Human
Computer Interaction Institute (HCII) and continues on its
steering committee. Dr. Waibel was one of the founders of
C-STAR, the international consortium for speech translation
research and currently serves as its chairman. He codirects
Verbmobil, the German national speech translation initiative.
His work on the Time Delay Neural Networks was awarded
the IEEE best paper award in 1990, and his work on speech
translation systems the Alcatel SEL research prize for tech-
nical communication in 1994. Dr. Waibel received his B.S.
in Electrical Engineering from the Massachusetts Institute of
Technology in 1979, and his M.S. and Ph.D. degrees in Com-
puter Science from Carnegie Mellon University in 1980 and
1986.

