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ABSTRACT 

In speech recognition, speaker-Dependence of a speech 
recognition system comes from speaker-Dependence of the 
speech feature, and the  variation of vocal tract shape is 
the  major source of inter-speaker variations of the  speech 
feature, though there are some other sources which also 
contribute. In this paper, we address the  approachs of 
speaker normalization which aim at normalizing speaker's 
vocal tract length based on Frequency Warping (FWP). 
The FWP is implemented in the Gont-end preprocessing 
of our speech recognition system. We investigate the for- 
mant-based and ML-based F W P  in linear and nonlinear 
warping modes, and compare them in detail. All exper- 
imental results are based on our JANUS3 large vocabu- 
lary continuous speech recognition system and the Spanish 
Spontaneous Scheduling Task database (SSST). 

1. INTRODUCTION 

In speech recognition, we are mainly facing three major 
challenges: (1) speaker-dependence of the speech signal, 
which leads to speaker-dependence of the speech recognizer; 
( 2 )  co-articulation of the speech units for acoustic models, 
which leads to context-dependence of the speech recognizer; 
(3 )  environniental noise, which leads to the problem of ro- 
Iiustness of speech recognizer in practical use. Almost all 
kinds of speech feature are extracted from the  speech signal 
or waveform. The reason of speaker-dependence of speech 
signal is very complicated. It is not only related to the phys- 
iological differences of speakers, such as vocal tract shape 
and fundamental pitch, but also related to the  linguistic 
differences, such as accent, dialect and stress, etc., or even 
the physical and mental conditions of speakers [l]. But it 
is generally agreed that one of the major source of inter- 
speaker variance is the vocal tract shape, especially the vo- 
cal tract length (VTL) 12, 31. Therefore, many researchers 
have been working on the VTL normalization v ia  FWP in 
order to compensate for the  speaker variation. The ear- 
lier researches were focused on the identification of isolated 
Vowel [l, 2, 31. In the recent researches, the FWP was in- 
vestigated in continuous speech recognition system [4, 51. In 
[4], a linear FWP was investigated, and the  warping factors 
were obtained by grid search based on Maximum-Likelihood 
(ML) criterion. We refer this method as ML-based FWP. 
The advantage of the ML-based F W P  is that  it guaran- 
tees to find the warping factor which is optimal in the ML 
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criterion. The weakness of this method is that  it is rela- 
tively expansive in computation. In [5], a parametric ap- 
proach for FWP was proposed. We refer this method as 
formant-based FWP. The idea is the same as in [ 2 ,  31, i.e., 
the warping factors were obtained from formant estimation. 
But they investigated the method in large vocabulary con- 
tinuous speech recognition system. The advantage of the 
formant-based FWP is that  it is not very expansive in com- 
putation. The weakness of the  method is that  the warping 
factor is obtained only based on formant, so that it has no 
relationship with the ML-score and hence can not guarantee 
that the FWP can increase the  ML-score. In this paper, we 
investigate the formant-based and ML-based F W P  method 
for speaker normalization. In the formant-based FWP, in- 
stead of just using the third formant, we also investigate 
to use the first and second formant in OUT experiments. We 
experiment linear and nonlinear F W P  in the formant-based 
and ML-based method, and evaluate the methods based on 
our JANUS3 large vocabulary continuous speech recogni- 
tion system 

2. FREQUENCY WARPING 
2.1. Preprocessing 
The spectrum of the recorded speech signal X ( w )  is as- 
sumed to be transmitted via some kind of channel and to 
be obtained via some kind of receiving device. In the trans- 
mitting and receiving process, the clean speech signal S ( w )  
is disturbed by the channel distortions and some additive 
noise N ( w ) .  Most of the channel distortion H ( w )  can be as- 
sumed to be niultiplicative in the frequency domain leading 
to equation (1). 

X ( w )  = H ( w ) S ( w )  + N ( w )  

Here we assume that X ( w )  has been segmented with Ham- 
ming window, so that H ( w )  and N ( w )  also includes the ef- 
fect of pre-emphasis and Hamming window. In the typical 
front-end processing of speech recognition system, X'(w) is 
passed through a set of Melscale filterbank which have tri- 
angular shape and is spaced in Me1 scale [6 ,  71. Hence the 
signal passing through such filterbank can be formulated as: 

Y ( i )  = ~ , ( w ) x ( w )  O <  i ~ N - I  (2) 
W = W , h  

W==W,(  

Where N is the nuniber of filters, and w , ~  and w,~,  are the 
lower and upper bound of the i-th filter T,(w).  After pass- 
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ing through the Melscale filterbank, the logarithm of Y(z) is 
transformed with the DCT, so that the final N-dimensional 
feature vector is a set of Melscaled Frequency Cepstral Co- 
efficients (MFCC): 

N - 1  

Because of the logarithm in the Y-space, the multiplica- 
tion of H ( w ) S ( w )  in equation (1) becomes additive in the 
Z-space, i.e., feature-space (ignore N ( w ) ) .  This is the rea- 
son that many researchers use affine transformation (rotate 
and/or shift 2) in the feature-space to do speaker normal- 
ization (such as Mean subtraction) and adaptation (such as 
MLLR). Suppose that F W P  is performed in the X-space in 
equation (l),  and the warping function is w' = cp(w), then 
equation (2) becomes 

W=wih 

~ ' ( i )  = ~ , ( w ) ~ ( p ( w ) )  o 5 i 5 N -  1 (4) 
w = w / ,  

Comparing equation (4)  to equation (2), it is clear that  
in most cases, the above FWP is equivalent to a nonlin- 
ear transformation in the  Y-space, even in the case of lin- 
ear warping, for which we assume p ( w )  = cyw (with con- 
stant a) .  Hence it is also a nonlinear transformation in the 
2-space. From this point of view, considering tha t  FWP 
aims to reduce the effect of frequency shift of, for example, 
formant positions, but not the linear channel distortions 
caused by the vocal tract and other speaker characteristics, 
it  should be used together with the other affine-transform- 
based speaker normalization or adaptation methods. 

2.2. Front-end I m p l e m e n t a t i o n  
According to the Fourier transformation, F ( a w )  H 
l / a f ( t / n ) ,  the F W P  (compress or stretch in frequency axis) 
is equivalent to resaniple the waveform in time axis. Where 
(L is the warping factor. Considering that our recognition 
system is synchronous in franie and all other features are 
extracted based on the spectrum, the F W P  is implemented 
right after the short time spectral analysis stage in the front- 
end preprocessing of the system. The spectrum is warped 
in frequency axis frame by frame. Figure 1 is the block di- 
agram of the JANUS front-end preprocessing. Where E L  is 

I warping factors I 

F i g u r e  1. D i a g r a m  o f  FWP front -end  

input speech signal, zn is output PLP feature vector. FWP 
represents Frequency Warping, and P L P  means Perceptual 
Linear Predictive [7]. The feature we are using in the  exper- 
iments is the same as in [8], except here we insert a FWP 
step between FFT and P L P  processing. The final feature 
is a 13-order Perceptual Linear Predictive (PLP) feature 
plus a power coefficient. We combine it  with its delta and 
delta delta to form a 42-order feature vector and reduce the 
feature order from 42 to 28 after the LDA transformation. 

We use the  following piecewise warping functions in both 
formant-based and ML-based FWP. 

Linear FWP: 

f ' = { a;'f i f f  < F  
b f + c  i f f > +  

Nonlinear FWP: 

- @ / / ~ F N )  f i f f  < y- 
f'= { o, 

bf + c  i f f  > F  

Where a,  = F,/F is the warping factor of speaker S, F, 
is the average formant frequency of speaker S and P is the  
average formant frequency over all speakers in the training 
set. FN is the  bandwidth. b and c axe constants which can 
be calculated according to the equations of a J  = U' + c 
and bFN + c = FN. F is used as a threshold which aims 
at compensating for the bandwidth mismatch after warp. 
Therefore, if the frequency axis is compressed from f = 0 
to f = F, it will be stretched from f = F t o  f = FN in 
order to have f '  = f a t  the upper boundary of bandwidth. 
If 3 is set to F N ,  then the warping is equal t o  those in 151. 

2.3. Tra in ing  Procedure 
For the formant-based FWP, we use the Waves+ software to 
estimate formants (up to the third formant) of each speaker 
in the training set. The median value of each formant of 
each speaker and the  median value of each formant over all 
speakers in the training set are calculated, then the warp- 
ing factors a, for every speaker are obtained. In training, 
we load in the warping factors and use them t o  warp the 
power spectrum (as showed in figure l), and do  the  itera- 
tive training with the warped feature. For the ML-based 
FWP, the training principle is to  find the warping factor 
which maximums the likelihood [4]. We use the  following 
procedure for training: 

1. Set the initial warping factor as = 1.0 for all speakers 
2.  Do Viterbi training based on current warping factors 
3. Find the best warping factor in a limited grid, that  is, 

cy; = argnzaz,P(X,(p(f)) I h,W,),  I ,  5 as 5 11,. 

Where X', is the feature vector sequence of speaker S, 
and W, is the corresponding transcription. I, and 11, 

are the lower and upper bound of the grid search area. 
They are defined as I ,  = cys - A and h, = as t A. 
Where as is the current warping factor. 

4.  Set cy, = cy:, go to step 2 

The above procedure stops if there is not significant differ- 
ence in the warping factors between two consecutive train- 
ing iterations. 

2.4. Testing Procedure 

For the ML-based FWP, we use a decoding procedure which 
is a little bit different from [4]. The input utterance is 
first decoded and aligned with the decoding output hy- 
pothesis without FWP, then the feature is warped with all 
possible grid points, and the ML-score is calculated with 
those warped features on the voiced phonemes in the path 
of alignment. In that case, we do not need to do forced- 
alignment for all warping factors. Our experimental result 
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shows that the error rate is almost the same as the test pro- 
cedure in (41, but reduce the decoding computation. Obvi- 
ously, compared to the regular test procedure, the FWP test 
needs to do an extra decoding and forced-alignment plus 
the calculation of ML score for every warping factor. For 
the formant-based FWP, we estimate the formants for each 
testing speaker in the testing set with all available testing 
utterances of the speaker In the test, the warping factor is 
used to warp the feature directly so that no warping factor 
search is needed as for the ML-based method. 

3. EXPERIMENTS 
All experiments are based on OUT new JANUS speech recog- 
nition system. Compared to the JANUS-I1 system in [8], 
the new system uses polyphone, instead of triphone context 
in the acoustic model, and clusters and splits the models 
based on the decision-tree. We already used the formant- 
based FWP on the Switchboard database and reached 
about 5% relative error reduction. The ML-based F W P  was 
successfully used on the GSST (German SST) before and 
reduced the error rate by about 12% [9]. In the following 
sections we report results obtained on the SSST database 
comparing both methods. Compared to the database in [8], 
we increased about 4500 cross-talk utterances in the train- 
ing set, and keep the same Devset. Thus there are 10650 
utterances (5785 from 68 female speakers and 4865 from 
72 male speakers), which is about 1 2  hours data, for train- 
ing. The test vocabulary consists of 4606 words, and the 
language model is the class-based language model. 

3.1. 
In this section, we present the distributions (histogram 
statistics) of the warping factors obtained from the formant- 
based and ML-based FWP in the training set. 

Distributions of the warping factors 

25 
Female - 

Male - 
20 
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Nonlinear 
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Figure 2. Histogram of F1 warping factors 
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Figure 3. Histogram of F2 warping factors 
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Figure 4. Histogram of F3 warping factors 
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Figure 5. Histogram of ML warping factors 

From the distribution figures, we find that the warping 
factors of female speakers are dominant in the area of as 2 
1.0, and the males are dominant in the area of a,  5 1.0. 
This coinsides with the fact that most of female’s formant 
frequency is higher than man’s. it also illustrates that the 
ML-based searching method can, in some extent, catch the 
formant variations, though it has no relation with formant 
estimation. But we can also find that the male and female 
factors in Figure 2 to 4 are not clearly separated as in 5, and 
they are mainly falling in the area around 1.0 and have a 
smaller variation (especially for the factors from the second 
and third formant). 

3.2. Recognition results 
In this section, we present the recognition results on the 
push-to-talk test set. 

Table 1. Word error rate of different FWPs 

Table 1 contains the word error rate of the formant- 
based and ML-based FWP. Where F1, F2 and F3 means 
the formant-based FWP (first, second and third formant), 
and ML means ML-based FWP. It shows that (1) the lin- 
ear FWP is always better than their nonlinear partner; (2) 
the ML-based FWP is better than the formant-based FWP. 
Among the formant-based FWP, we can see that F1 gave us 
the best result. These results are not consistent with that 
we used to observe GOXU the Switchboard data, with which 
we observed that the nonlinear warp is better than linear 
warp. We also tested the cross-talk test set and observed 
that (1) ML-based FWP do improve the performance, but  
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not n5 much as i t  does on the push-to-talk test set; (2) the 
nonlinear F W P  is still worse than the linear FWP; (3) the 
formant-based F W P  does not improve (actually they hurt 
a little) the performance. From the results we can conclude 
that the effectiveness of F W P  depends on the database, be- 
cause the warping factor depends on the context, not just 
the speakers. 

F1 
9.9% 

20.5% 
14.2% 
26.0% 
30.0% 
14.0% 
15.6% 
21.0% 

10.4% 

11.8% 
27.1% 

Mrnn 31 5% 
Fcba 14.0% 

15.5% 
Fmcs 25.0% 

F2 F3 ML 
7.4% 9.9% 6.5% 

23.5% 21.6% 21.6% 
12.8% 12.3% 11.8% 
28.4% 27.0% 27.9% 
32.1% 32.3% 27.8% 
16.3% 15.6% 12.1% 
16.5% 15.9% 14.3% 
22.0% 22.9% 21.2% 

Fmgl 1 25.0% I 26.4% I 26.9% I 25.5% I 25.5% 
average I 21.8% I 20.5% I 21.9% I 21.6% 1 19.8% 

Tab le  2. Word error rate for each speake r  

Table 2 shows word error rate of each speaker in the test 
set. They were obtained based on the  linear FWP. Where 
the first character (M/F) in speaker name represents gen- 
der. We can see that: (1) for some speakers, the FWP could 
not reduce their word error rate, such as Mfmni and Fmgl; 
(2) no warping method is consistently better than the oth- 
ers for all speakers, though the ML-based one is better on 
average; (3) it seems tha t  the amount of error reduction 
is not relating to the baseline error rate. For example, for 
some speakers who already have a relatively low baseline er- 
ror rate, such as Meba and Fcba, the FWP can still reduce 
the error rate. But for some speakers who have relatively 
high error rate, such as Mfnim and Fmgl, the FWP could 
not reduce their error rates. I t  means tha t  FWP could not 
reduce the variations for some of the speakers. We think 
one of the reason might be the warping functions, linear or 
exponential, does not reflect the relationship between for- 
rnants and VTL, because of the context-dependence of such 
relationship [lo]. Another reason for the ML-based FWP 
might be that the warping factor, is only optimal for the 
models which appear in the alignment path, i.e., increas- 
ing their ML-score, it could increase more ML-score for the 
other models too. For the formant-based FWP, it is un- 
certainty if the inferior performance of is because of the 
formant estimation accuracy. Because Formats are context 
tlependent, it should be better if formants are estimated 
based on the same context over all speakers. We calculated 
the average male and female VTL with the formulate in [2], 
and obtained 16.45cni for male (15.47cm for female) which 
is near the standard value (17" [lo]. We found tha t  F3 is 
the best one for estimating VTL. This might be that vowel- 
dependence of the F3 is not as strong as the first two. But 
we can see, from the histogram of warping factors, that  the 
third Format does not reflect much difference among the 
speakers, though the average VTL value seems reasonable. 

4. CONCLUSION 

In this paper, we investigated the formant-based and 
ML-based F W P  with linear and nonlinear warping func- 

tions, and reported our experimental results based on the 
JANUS3 large vocabulary continuous speech recognition 
system and the SSST database. The ML-based F W P  is 
better than formant-based FWP. We obtained about 10% 
error reduction with the ML-based FWP. 
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