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ABSTRACT 

This paper discusses the problem of gaze tracking and 
its applications to multimodal human-computer interaction. 
The function of a gaze tracking system can be either passive 
or active. For example, a system can identify user's mes­
sage target by monitming the user's gaze, or the user could 
use his gas,,e to directly control an application or launch 
actions. \Ve have developed a real-time gaze tracking sys­
tem that estimates the 3D position and rotation (Pose) of 
a user's head. \Ve demonstrate the applications of the gaze 
tracker to human-computer interaction by two examples. 
The first example shows that gaze tracker can help speech 
recognition systems by switching language model and gram­
mar based on user's gaze information. The second example 
illustrates the combination of the gaze tracker and a speech 
recognizer to view a panorama image. 

1. INTRODUCTION 

:\Aultimodal human-computer interaction has rnceived much 
attention recently. Several researchers have studied the 
effectiveness of multimodal human-computer interaction 
[1, 2, 3]. Multimodal interfaces benefit from the redun­
dancy, naturalness and flexibility that arise from exploiting 
alternate and complementary communication cues. Our 
research efforts at the Interactive Systems Laboratories 
(Carnegie l\follon University and Univcniity of Karlsruhe) 
are focused on producing a sensible and useful user inter­
face to support the multimodal human-computer interac­
tion. Some of our init ial works along this line have been 
reported in previous publications [4, 5]. \Vhile multimodal 
interfaces offer greater flexibility and robustness, they have 
still been largely pen- or voice-based, user activated, and 
operate in settings where headsets, helmets, suits, buttons 
or other constraining devices are required. If more freedom 
is to be provided to users, some important parameters of 
the communicative situation have to be identified. For ex­
ample, who or what is the target and object of the message 
(focus of attention). This information provides communi­
cation cues to a multi-modal interface. One way to obtain 
such information is through gaze tracking. 

In this paper, we address the problem of gaze tracking 
and its application to multimodal human-computer inter­
action. A person's gaze direction is determined by two fac­
tors: the orientation of the head, and the orientation of the 
eyes. \Ve limit our discussion to the head orientation in this 
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paper. A real-time gaze tracker is a prerequisite for tracking 
user's gaze. There have been several approaches to compute 
the gaze of a person. Hardware-intensive a.nd/or intrusive 
methoch,, where the user has to wear special headgear, or 
methods· that use expensive hardware such as radar-rangc­
finder [6]. Recently, there have been prnposed non intrusive 
gaze trackers using mainly software. For example, Cipolla 
& Gee [7] developed a system to track the rotation and po­
sition of the head by finding correspondences between facial 
feature points and corresponding points in a model of the 
head, using a weak perspective projection. However, the 
system has to be initialized manually because the system 
cannot locate the face and the facial feature points auto­
maticallv. 

\Ve h~ve developed a non-intrusive model-based gaze­
tracking system [8, 9]. The system estimates the 3-D pose of 
a user's head by tracking as few as six facial feature points. 
The system locates a human face using a statistical color­
modei without any mark on the face. It is able to find and 
track facial feature points automatically, as soon as a per­
son appears in the field of view of the camera, and turns his 
face toward the camera. The system then finds and tracks 
the facial features, such as eyes, nostrils and lip-corners. 
The system is also able to recover from tracking failures. 

In a multimodal interface the function of a ga,;e track­
ing system can be either passive or active. For example, 
a system can identify user's message target by monitor­
ing the user's ga;1,e, or launch an action by user's gaze. 
Furthermore, a gaze tracking system can be used alone, 
or/and combined with other system such as a speech recog­
nition svstern. vVe demonstrate the applications of the gaze 
tracker ·to human-computer interaction by two examples. 
The first example shows that gaze tracker can be U8ed to en­
hance the performance of a multimodal interface. The sec­
ond example illustrates the combination of the gaze tracker 
and a speech recognizer to view a panorama image. 

2. A REAL-TIME GAZE TRACKER 

In this sect.ion we briefly describe how to track gaze in real­
time [8, 9]. 

In our system we are estimating the gaze of the user by 
computing the pose of his head. This is done by finding cor­
respondences between five to six model points such as eyes, 
nostrils and lip corners in a simple 3D model of a head, 
and their corresponding locations in a camera image. To 
compute the pose from these 3D to 2D correspondences we 
used the POSIT algorithm, recently proposed by DeMen­
thon and Davis [10]. 

In order to compute the pose, the facial features must, 
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Figure 1. Iterative thrflsholcling of t.he sf!ru-da win­
dow 

he :<earched and tracked in the camera image. To search 
the facial features vm use a top-down approach: First we 
seard1 the facial area in the image, using a statistical color 
model, then the searr.h of the faciri.l features is restricted 
to certain areas inside t.!1e face. Once t.!1e features ltave 
been found, the secU-..:h for these features can be restricted 
to small search windO\\-s around their previous positions. 
a11d faster i;earcl1 strat!{ics can be applied. Furthcnnm·c, 
these local search windows can be predicted using linear 
extrapolation over prcvioue. positions and U1cir si;,;e can be 
adjusted to the octual size of the face in the image. 

Sem·ching Uuc! Faclc! 
To find and tra<:k the f;u;e, we use a statistical color-model 
consist.ing of a two-dimensional Gaussian distribution of 
rn:,miali½ed face ('.Oiors [11 ]. 'T'lie input. ima!{e is sean::l1ed 
for pixels with face colors and the la.rgest connected region 
of face-colored pixels in the camera-image is considered as 
the region of the face. The color-distrilmtion is initialized 
so :i.!'I to find :i. variety of face-colors and is gradually adapted 
to the actual found foc.c. 

Searching the Pupils 

Assuming a frontal view of the face initially, we can search 
the pupils by looking for two dark regions r.hat satisfy cer­
tain geometric constrail1ts and lie within a certain area of 
the face. 

For a given !'lituat.ion, these dark regions can be located 
by applying a fixed threshold to the grayscale image. How­
ever, the threshold value may <.:ha.nge for different people 
and lighting conditions. To use I.he thresholding method 
under changing lighting cc111tlit.ion8, we developed an it­
erative thresholding algorithm. The algorithm iteratively 
threshold<; the image until a pair of regions that satisfies 
the geometl'ic cc:mstraims can Lie fcrnnd. F·igUT·e 1 shows the 
it,erative thresholding of the search window for r.he eyes with 
thresholds k.;. After three itc.rations, both pupils arc found. 

Ilccause the thresholding value is adjustable, U1i~ method 
is able to apply to various lighting conditions and to find 
the pupils in very differently illuminated faces robusr.ly. 

Searching the Lip Corners 
First, the appl'oximate positions of tbe lip co1·ne1·s are pre­
dided, using the positions uf the eyes, the f&e-rnodel and 
the assumpt.ion, t.hat. ,vc have a near-frontal view. A gcn­
CT'Ously big area around t.l1ose poiut.s is ext.racted and used 
for further search. 

Finding the vertical position of the line between the lips 
is done by using a hori½ontal integral projection P,. of the 
grey-scale-image in the sean;h-region. Because lip line is the 
darkest horizontally C'.xtended sr.rncturc in the search area, 
its vel'ti('.al positic:n; can be located wl1ere P,. has its global 
minimum. 

The horizontal boundaries of the lips can be found hy 
applying a horizont.al edge detect.or to the refined search 
area and regarding the vertical integral projection of this 

horziontal edge image. The positions of the lip corner~ c:an 
be found by looking for the darkest pixel along the two 
columns in the search area located at the horizontal buund­
arie!'I. 

Searching the Nostrils 
Similar to searching the eyes, the nostrils can be found by 
searching for two dark rcgioni;, that satisfy certain geomet­
ric constraints. Here the search-region is restrided to an 
are:i. below the eye!! :i.ud :i.bove the lips. Again, itC'.rative 
tltresltolding is used t-o fo1d a pair of legal dark regions, 
that are considered as the nostrils. 

Tracking the Eyes 
For tracking the eyes, simple darkest pixel finding in the 
predicted searr.h-windov.-s around the l:i.!'lt positions is used. 

Tracking the Lip Corners 
Tracking the lip-corners rnnsi~t~ of the following ~teps: 

1. Searrh the darkest pixe-1 in :i. search-region right of the 
predicted position of the left corner and left of the pre­
dined position of the right corner. The found points 
will lie on 1,he line be1,ween I.he Iip:-

2. Scarr.h the darkest. path along the lip-line for a c<:'.rtain 
distanced to the left and right respectively, and choose 
positions with maximum contrast along the search­
path as lip-corners 

Ilecause the shadow between upper and lower lip is the 
dai·kest region in the lip-area, the seard1 for the darkest 
pixd in 1.he :=ie:i.rr.h winclows near t,he predided lip corners 
ensures that. even with a bac.l pre<l iction of the lip cm·11CT'S, 
a point on the line between the lips is found. Then the true 
positions of the lip cornC'.rs can be found in the next step. 
Figul'e 2 shows t.l1e two search wirn.lows for tl1e. poiT1ts c:m 
the line between the lips. The two white lines mark the 
search paths along the darkest paths, starting from where 
the darkest pixel in the search windows have been found. 
The found corners arc marked wit.Ii small boxes. 

Figure 2. Search along the line bet.ween Hae lips 

Tracking the Nostrils 
'Tracking the 11ostrils is al8o done by iteratively tln-eshokl­
ing the searc:h-region and looking for 'legal' blohs. But 
whC'.rea.<i we have to !'leareh a rclativdy big area in the ini­
tial sem-d1, dm·iT1g t.rackiT,g, t.l1e seareh-window ('.at1 be posi­
tioned around the previous position!'I of the nostrils, and c:an 
be chosen mur.h smaller. Furthermore. the init.ial threshold 
can be initialized with a value that is.;, little lower than the 
intensity of the nostrils in the previous frame. Thi:< limits 
the number of 11eeci;i;ary iteratic111s to be very small. 

However, not always both nostrils are visible in r.he image. 
For C'.xample, when I.he head is rotated sr.rongly to the right, 
tlte rigltt nostril will disappear, an<l 01dy the left one will 
remain visible. To deal with this problem, r.he search for 
two nostrils is done onlv for a certain number of it<:'.rat.ions. 
If no nostril-pair is fou~d, then only one nostril is searched 



by looking for the darkest pixel in the search window for 
the nostrils. To decide which of the two nostrils was found, 
we choose the nostril, that leads to the pose which implies 
smoother motion of the head compared to the pose obtained 
choosing the other nostril. The position of the other nostril 
can be predicted using the current estimated pose, as shown 
in Figure 3. 

Figure 3. Predicted nostrils (marked with box) 

Rejection and Prediction of Outliers 

To increase the robustness a;; well as the accuracy of the 
system, we try to find outliers in the set of found feature 
points, and predict, their true position in the next frame. At 
the same time, we use a most consistent subset of 2D to 3D 
point-correspondences to compute the pose, instead of using 
all found points. To find a best subset we investigated two 
methods proposed by Gee & Cipolla [12]: Sample consensus 
tracking and temporal continuity tracking. l:"sing the first 
method, the subset is chosen that leads to the best back­
projection of model-points into the image-plane. l:"sing the 
second method, the subset that leads to the pose implying 
the smoothest motion is chosen as the best subset. 

Once the best subset of features is found, the true posi­
tion of an outlier can be easily predicted by projecting its 
model point into the image, using the computed pose. This 
prediction allows the system to recover from tracking errors 
and leads to a more robust tracking of the feature points. 

Recovery from Tracking Failure 

In order to build a robust usable tracking system, the sys­
tem has to be able to detect tracking failure and to recover 
from it. 

To detect tracking failure, the average distance between 
the back projected model points and their actual found 
locations in the image can serve as a measure of confi­
dence. Once this average distance exceeds a certain thresh­
old, tracking failure is considered. The system then searches 
the features again. However, if failure occurs during track­
ing, we cannot assume a frontal view of the face anymore, 
because failure could have occurred at any possible rota­
tion of the head, and the initial search might not work 
anymore. This problem can be solved by initializing the 
search-windows and the geometric restrictions according to 
the previously found pose. For example, if failure occured, 
while the person was looking to the right, we then shift the 
search window for the eyes more to the right in the facial 
area, and more to the left , if the person was looking to the 
left. 

Experimental Results 

To evaluate the system we compared the output of t he gaze 
tracker on some pre-recorded image sequences to the results 
obtained by labelling the facial features manually. The best 
results were obtained using the temporal continuity method 
[12], where we achieved rotation errors as low as 5 degrees 

for rotation around the x- and y-axis and as low as 1 de­
gree for rotation around the z-axi. The average distance in 
x- and in y-direction of manually marked feature locations 
and the automatically found locations was between two and 
three pixels. The system runs with around 20 fran1es per 
second. See [8, 9] for complete results. 

3. APPLICATIONS TO MULTIMODAL 
INTERFACES 

Although gaze tracking techniques have existed for a long 
time, most applications of these techniques have been in 
psychological research for probing into subjects' perceptual 
or cognitive processes. Tracking the locations of the users 
and their gaze direction can provide additional helpful vi­
sual information to a user interface. In this section we dis­
cuss the applications of a gaze tracking system to multi­
modal human-computer interaction. 

A gaze tracking system can be used in interfaces to cre­
ate a faster and simpler communication between human and 
computer. A gaze tracking system can be used either ac­
tively or passively in an interface. An application of eye­
gaze tracking would be for activating a window on a screen 
or directing inquiries. This application is similar to those 
techniques that have been in assistant devices for disabled 
people. An interesting research issue is how to improve the 
reliability of the gaze information. Even if a gaze tracker 
could provide high accuracy gaze information, gaze infor­
mation alone is not reliable. For example, when a user sits 
in the front of a screen, he/she may look around randomly 
even though his/her focus of attention is at a certain win­
dow. A solution is to combine the gaze with other modal­
ities to increase reliability. Another area where eye-gaze 
techniques potentially can be applied are in virtual real­
ity and games. By using gaze tracking the user can view 
different scenes as he/she looks at different directions. Pas­
sive applications of gaze tracking system include monitoring 
users' eye-gaze pattern, blink rate and pupil size. The sys­
tem can send an alert signal if an abnormal pattern would 
be detect ed. 

Switching Language Model and Grammar 

The performance of a speech recognition system depends 
on specific applications which reflect the constraints on the 
task. Different technologies are sometimes appropriate for 
different tasks. By limiting the vocabulary size and devel­
oping the language model and grammar for the task, we 
can obtain a high quality speech recognizer. However, a 
user may work on many different tasks at the same time. 
It is desirable to switch the language model and grammar 
automatically. This requires the system to have a method 
to detect, user's status. One way to do this is to find out 
the user 's focus of attention. Suppose that different tasks 
are running in different windows on a computer. User's gaze 
can reflect his/her attention. In order to increase reliability, 
we can use voice commands to confirm selections. 

We have developed an interface to demonstrate the con­
cept. vVe use gaze and voice to switch language mod­
els for Janus III recognition engine [13]. The Janus III 
system is at present specific to discourse domains of com­
mon interest, and supports spontaneously uttered human­
to-human speech. Janus III was designed to be a speech 
recognition research tool. It has the ability to dynami­
cally switch language models and grammar.It has its own 
object-oriented programming language implemented on top 



}'igure 4, Controlling a panorama imap;e viewer 

of T d/Tk. This prop;ramrning ltmp;ua:1e allo1,1;,:; researthers 
to do both, trigger powt•rful huge trniuiug proct·sscs with 
oue single t·onmrn,11<] and to coutrul very low levd fca­
t,ure~ ( down to sllig;le ac.oust:ik varau1e1:;ers) wit l1 siTnµle com­
m,:rnds. 'Tcl/'Tk offers a U$er friendly environmen~ wiLh easy 
r.o implP.mP.nr. G L: 1~. The ga.zf! tradtf!r is n~ed TO df!tec:t. tbf! 
u~er's focus of ar.r.ention. When r.he n~er is looking ar. a. 
window, the window will be highlighr.ed. I\ o action ii; taken 
unless r.hc usl~r uses a voice comnm.nd to <:<mfirrn the sdcc­
tion. Tht· voict• cornmancb tould be "sekd this window" or 
''ckl\St> "·im.lo .... 0'. i:-tc .. Once the ~election i8 co11fin11i:-d, tl,c 
interface v.,ill send a co:mnna11 ti to .Ja11u8 system to cl,a11 bte 
the lanb"Ulbte model anti b'TammaT. 

Viewing a Panorama Image 
A~ another applkarion, Wf! df!vf!lopP.d a mult.imodal inr.P.r­
facc to control a panorama in1agc viewer. A p;u1orama hn­
age iH made from photographs, video stills, or computer 
reuderiugs. Most p,mormuu.~ art· made frolll photographs as 
tlwy provide the most realistic illlages. Till' qTVIl. Player 
i:i ;,i shi11(l-o.ilo11c.• applic.:atio11 foT l\;lat (or <.t c.:c.t1upo11l•11t file 
for Windows) ~ha\ lels you ex1>erience virlual realit,y scenes 
and object,s from your desklo1>- The QTVll Player allow$ 
r.he user r.o 8<'.roll r.hrough :{(·i() degree pauora.ma. ima.ges by 
using r.he mouse or keyboard, and to zoom in and our. ui;ing 
r.hc key board. Ju oder r.o make the nHer hands free, we have 
dl\Vdopcd an inr.erface that. u~eH gaze to control scrolling 
r.hrough t,hl\ pa11or,11m1 irnageH, and voi<:e-comnrnnds to con­
r.rol the zoom. 

The interface receives pm-amer.ers de6r.ribing the rota.t.ion 
of the Ui;t~i;• head from Uw gaze tracker >llld 1>~1raxm\krs for 
r.hc spoken comrn,i.nd, frorn a sp<~Jch-rccoi,'llizer. It r.hcn 
::i;c11ds 1nc.•s~c.tgc:11,rl1kh ~inn.1 l..ttc 1nou~c.'- 01· lcey-cvc.•nt.::i; t.o tl1e 
in1a,gc, vi~wer i11 on1cr to co11t.rol scrolling and YOCnnh1g. ·Tl1c 
interface an<l t;;J1e in1ag;e viewer aTe n11mi11g; 011 a PC~ ga,'lie 
l,rad<.P.r aD.d speech rP.i,ogni,:P.r a.rt'! 1·11nning on work~I a1 ions. 
Comnmnica.t.ion with the inr.erface is done via. sockflts. 

\Vit,\, ~uch an interfac.e. a ,1~eT can fu llv co:mtTOl tl,e 
panorama image v iP.wP.r __;il ho 111. using hi~j hP.r hands as 
shown in Fignre 4. He/5hfl c-<111 sc.roll r.h.rough r hf! panorama. 
image~ in a na.tural way by looking TO thfl lPft. a.nd right. 
or up and down, mid he can conr.rol the zoom by Hpeaking 
comrnancl,; snch as "zoorn in". "zoorn out" or '·zoom in three 
times". The b,~~it concept of this inkrfacc can bt• extended 
t.o n;,ivigtitc in tt viltual c11vin.t111ric.•11t. v,:hcrc tl1c surrounc.1h1g· 
then can he rcm.lt>TCtl aceonliug to the 1.1st>T~' ga>:e. 

4. CONCLUSTON 
\Ve have addressed the problem of :i;aze tracking for multi­
mocln.l h11111an-cornp11ter int.cradion. A !!;>LZe r.radcing sys­
tem ca11 cnl1a.ncc l11.11uc,1,11 l'OTTl).lUtcr co1n1riu11ic.:ation in 1nti11y 
way$. \Ve l,avi:- <.knu:111 stTati:-d t I, (tt a ga-,c trad<t>T can b~ 
used to detect a user's foc,1~ of atte,,tiou and driven a11 
inl,P.rfa.c.e. 'fhP. ga,:e inforllla I ion c.an improve 1.l1f! perfol'­
ma.ni,e of thfl inreraction ma.rle hy ot.hP.r ruodalit.iP.S. And 
or.her modiLlir.icH can be used to incrcasl\ the reliability of thl\ 
gaze. The c.oncepti; devPloped in r.his paper can be applied 
to otber applicatiow; Huc:h aH virr.ual reality simulatiow;. 
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