
ABSTRACT
As the Java programming environment offers immediate
capabilities for creating cross platform interactive applica-
tions, the web-based universal multimodal interface
becomes possible. In this paper we present a Java front-end
for multimodal human computer interaction. We employ a
client/server architecture to solve the problems with web-
based multimodal interfaces. We address the problems in
both system design and implementation. The feasibility of
the proposed approach has been demonstrated by a web-
based directory assistant system and a multimodal interface
for medical applications.

1. INTRODUCTION
The World Wide Web (WWW) has provided a very

effective means for accessing and disseminating multimedia
information. As the WWW becomes more and more popu-
lar, we have to find a more efficient way of creating and
manipulating multimedia information on the web. The effec-
tiveness of multimodal human-computer interaction has
been demonstrated by many researchers for many applica-
tions. Over the last few years, the Interactive Systems Labo-
ratories (Carnegie Mellon University and University of
Karlsruhe) have been developing multimodal human-com-
puter interfaces by providing speech, handwriting and ges-
ture in a integrated multimodal environment [1][2][3].

It will also be natural to employ multimodal interfaces
on the web. However, the application of multimodal inter-
faces to the web has been limited by several factors. First,
processing multimodal inputs needs a lot of computing
power. Second, a multimodal interface takes a large space.
Third, it requires a certain expertise to setup and maintain a
multimodal interface. Finally, different platforms require
different software supports. One way to remove these limita-
tions is to use a client/server architecture, i.e., a multimodal
server which performs speech, handwriting, gesture recogni-
tion, and multimodal interpretation provides services to a
front-end residing in different web browsers.

There are two problems associated with the multimodal
server approach: network bandwidth and machine indepen-
dency of the client side programs. One sentence of normal

speech data takes about 1 megabytes. If all the speech data
are sent through the network, it will worsen the network traf-
fic. In fact, we only need to handle speech and pen inputs for
modalities of speech, handwriting and gesture. Fortunately,
there is a lot of redundancy in the speech data. Our experi-
ments indicate that feature data needed for speech recogni-
tion are less than 10% of raw speech data. Based on this fact,
we can preprocess the speech data on the client side and
send only feature data through the network. Furthermore,
handwriting and gesture recognition needs only the coordi-
nates of handwriting and gesture strokes, which take little
bandwidth. In order to minimize the efforts of developing
web front-end for cross-platform interaction, it is desirable
to use a machine independent programming language. Java,
a programming language developed by SUN Microsystems,
perfectly matches our needs.

In this paper we present a Java front-end for multimodal
human computer interaction. The basic idea is to use Java
front-end to preprocess inputs from different modalities
(speech, handwriting, and pen gesture), send feature data
through the network, perform recognition and interpretation
in the server. We address the problems in both system design
and implementation. We describe the system structure and
detailed interface for speech, handwriting, and gesture
inputs from a web browser. The feasibility of the Java front-
end has been demonstrated by a web-based directory assis-
tant system and a multimodal interface for medical applica-
tions.

2. SYSTEM STRUCTURE
The system structure is shown in Figure 1. The system

consists of a multimodal server and a Java front-end. The
multimodal server performs speech, handwriting, and ges-
ture recognition and multimodal joint interpretation. The
multimodal server communicates with the Java front-end
through two communication servers: i.e., HTTP server and
TCP/IP socket server. Because a web page has to be sup-
ported by an HTTP server, we have developed a server mon-
itor by using the CGI script. Whenever our web-based
multimodal demo page is loaded by a user, the server moni-
tor will check all related programs. If any program crashes,
the server monitor will restart it automatically.

The Java front-end handles multimodal inputs, data pre-
processing, and communication between the server and the

Java Front-end for Web-based Multimodal Human-Computer Interaction

Xing Jing, Jie Yang, Minh Tue Vo and Alex Waibel

Interactive Systems Laboratories
Carnegie Mellon University

 Pittsburgh, PA 15213-3890, U.S.A.
Email: {xjing, yang+, tue, ahw}@cs.cmu.edu



front-end. We will discuss the Java front-end design and
implementation in next section.

FIGURE 1: System Structure

3. JAVA FRONT-END
The Java front-end includes a Java applet and a web

browser plug-in. They both are capable of running Java pro-
grams. When a web browser is equipped with the Java front-
end, a user can easily use the browser to interact with the
WWW not only by keyboard and mouse but also by speak-
ing and drawing. Real-time requirement is a challenge for
developing a web-based multimodal interface. Even without
network delay, recognition itself takes time. In order to
increase user acceptance, we use a run-on mode in the sys-
tem. That is, the front-end starts sending data back to server
as soon as the user inputs and ships partial recognition result
back as soon as it is available. The recognizer is also in the
run-on mode, i.e., it processes or recognizes what it has got-
ten so far while receiving more data.

3.1. Java Applet Interface
A Java applet is simply a Java program that executes in

the context of a web browser capable of executing that pro-
gram. Our Java applet was designed to capture pen inputs
and control the speech recording plug-in at high level. The
Java applet runs in a run-on mode, namely it can receive and
display results while handling input events. The Java builtin
support for threads provides a powerful tool to improve
interactive performance. In order to enhance the interface
performance, a mutilthread strategy has been used to handle
the inputs, outputs, and interface management.

3.2. Speech Recording Plug-in
Plug-ins are dynamic code modules, native to a specific

platform on which the browser runs. The primary goal of the

plug-in is to allow existing platform dependent code to
seamlessly integrate with and enhance browser’s core func-
tionality. Our plug-in is used for recording speech data and
performing feature extraction. Because the system uses
server structure, the Java front-end has to send various data
to the server for processing. The amount of data transferred
through the network will directly effect the efficiency of the
system. As mentioned in the previous section, we can pre-
process the speech data locally and only send the feature
data to the server while it is doing recording. The feature
data consumes much less bandwidth than original raw data;
for example, 512 byte raw data can be reduced to 21 byte
feature data (only 5 percent of raw data) in our system. The
plug-in records speech data and extracts the features. It is
controlled by the Java applet. In order to reduce the response
time, the loop of the recording and data preprocessing was
designed in such a way that feature data will be sent to
server while a user is recording. When the user finishes
recording, only data in the last buffer has to be sent to the
server.

3.3. Network Communication Protocol
The Hypertext Transfer Protocol (HTTP) currently

dominates internet traffic, but it is a simple one-directional
request/response protocol. This protocol might work well for
browsing a web page in normal fashion using keyboard and
mouse; however, in a web-based multimodal interface, addi-
tional communication protocol is needed besides HTTP. We
use two TCP/IP socket servers for each run-on modality, one
for receiving data and another for sending results. Because
the inputs and outputs of the Java applet are multithreaded it
can receive the results and refresh the interface while han-
dling input events, i.e., these two TCP/IP socket servers are
concurrently working together.

4. INTERFACE DESIGN
A good human-computer interface is critical for an

application software, especially a web-based application.
Because web information is vast and time is valuable people
do not want to learn how to operate a web application by
manuals but spend their time accomplishing their goals with
little or no frustration. Therefore, for a web application soft-
ware, ease-of-use has become a prime factor in its success.

The interface of our system is simply an HTML web
page which a Java applet is anchored in. When a Java-
enabled web browser downloads such a document, the Java
byte code representing the anchored applet will also be
received and executed by the browser. The interface is
designed by a user-centered model. We have incorporated
several technical features in our interface to enhance its
ease-of-use and robust.

4.1. Simplicity
Simplicity is very important to a user-centered multimo-

dal interface, especially to a web-based interface. Its advan-
tages are:

• Reduce the apparent complexity of the interface

Plug-in

Operating System

Java Class Plug-in APIs

C Code forJava Runtime
Interface

Audio Driver

Recording

Java Applet

eb Browser

TCP/IP

HTTP

Multimodal Server
speech, handwriting, gesture

recognition

W

(Front-end)Client Side Server Side



• Reduce confusion for a user
• Reduce visual load on a user
• Reduce the interface set-up load on the web

Our interface consists of as few as possible GUI compo-
nents. Every component has a clear sign to let a user know
its function. If a component can be used for more than one
function the information panel on the interface will give the
user all the necessary navigation information.

4.2. Real-time
The delay of the result behind the input has a significant

effect on user acceptance. However, delay cannot be avoided
sometimes, especially on the web. Besides reducing time in
processing and transferring data, the user’s real-time feeling
is very important.

First, run-on approach is one of the best solutions. The
interface starts sending partial speech data immediately
when they are available, the server interprets the data gradu-
ally and ships partial recognition result back as soon as it is
available.

Second, we try our best to reduce the amount of data
transferred through the network. As mentioned in the section
3.2, the interface only send the feature data (about 5% of raw
data) to the server.

Third, the interface also needs to respond as soon as
possible to any request from a user, such as giving the vari-
ous navigation information, changing the button color and so
on, so as to enhance the user’s real-time feeling.

4.3. Navigation
Whenever a user makes a request to the interface he/she

will get the navigation information or feedback result imme-
diately. The navigation information shows detailed naviga-
tion instructions. The user can simply follow the information
to implement his/her goal. For example, if a user uses the
“Voice Pen Directory Assistant System” to find a CMU CS
person’s information, such as telephone number, email
address, homepage address, etc. If a user chooses to use
speech as the input, he/she can simply speak to the computer
by holding down the button “Record/Search.” After record-
ing, if the voice input is appropriate, the user will get a feed-
back “Good recording. Please wait for the recognition
result.” Otherwise, the user will be asked to input again. If
using pen, the user can simply write a name on the draw
panel. After writing, he/she will see the information “After
writing a name, please click the button “Pen Search” and
then wait for the recognition results” so he/she can just fol-
low what the information says.

4.4. Robustness
Robustness is a basic but stringent requirement to all

software, especially to the software that works on the web
and handles the perceptual inputs because its interface and
server must run separately on the different web sites and all
its inputs must be gracefully handled. We addressed robust
issue as follows:

First, to avoid sending useless data to mess up or crash
the server we defined a valid range for the voice input. If a
user’s voice input is in the range it will be preprocessed and
sent to the server. If it is out of the range it will be aban-
doned and the interface will give some feedback information
to the user. For example, if the voice input is not appropriate,
the user will see the information “Bad recording. Please
speek loudly when you try again.”

Second, an interlocking and mutilthread strategy was
used to handle the inputs, outputs, and interface event man-
agement. A user can interact with the interface while it is
processing other events. However, if a process of interpreta-
tion, such as the voice recognition, has not been finished the
user can’t start another one, but the user will be informed on
the information panel, such as “Previous task has not been
finished yet. If you wants to start a new one, please click but-
ton STOP and then try again.”

Third, as we mentioned in the previous section, we have
developed a server monitor by using the CGI script. When-
ever our web-based multimodal demo page is loaded by a
user, the server monitor will check all related programs. If
any program crashes, the server monitor will restart it auto-
matically. Furthermore, if a server is crashed while a user is
interacting with the interface, it will cause an error handling
process in the interface. This process will trigger the monitor
to restart the server and keep the user informed.

Fourth, a user is allowed to abort or stop any operation.
The user might want to abort what he/she has done for some
reason, such as waiting too long for all the results because
the network or the server is very busy, or he/she has changed
his/her mind, etc. If the interface has no such a function, the
user has to wait for finishing even though the processing can
not be finished for ever because something is wrong in the
network or the server. The stop button can abort or stop any
processing immediately whenever a user clicks it. If stop-
ping occurs while the speech recognizer is processing the
data the next immediate voice processing will have a little
delay because the previous speech recognition is still not fin-
ished on the server site, but generally the user cannot feel
any delay.

5. MULTIMODAL INTERPRETATION
5.1. Multimodal Components

Our labs have implemented recognizers and processing
modules for various input modalities, most notably speech,
pen input, and face tracking. These modality processors con-
stitute the basic components of all our multimodal systems.

Speech. Our speech recognition subsystem is based on
the recognition front-end of the JANUS speech translation
system [4] which is capable of processing speaker-indepen-
dent, spontaneous speech and working on the run-on mode.
The recognizer can be adapted to any task domain by
retraining the language models and possibly tuning the
acoustic models if the domain involves special vocabulary.
We also have a high-performance, real-time continuous
spelling recognizer for large lists of 100,000 or more names.



Gesture. Our approach to pen-based gesture recogni-
tion is to decompose pen strokes into sequences of basic
shapes such as line, arc, arrow, circle, cross... [5] The same
gesture shape may mean different things depending on the
surrounding context, hence each gesture component is aug-
mented by gesture contexts indicating spatial relationships
between the gesture and nearby objects in the user interface.

Handwriting. Our MS-TDNN-based handwriting rec-
ognizer [6] is capable of processing writer-independent, con-
tinuous (cursive) handwriting at a recognition rate of 94% on
a 20,000-word vocabulary and working on the run-on mode.
We employ simple heuristics to decide when to invoke hand-
writing recognition on pen input, e.g., when the gesture rec-
ognizer cannot identify the input strokes as basic shapes.

5.2. Joint Interpretation
In order to make sense of input from all available

sources, we need a multimodal interpreter capable of pro-
ducing an interpretation of user intent (e.g., a command to
execute in the application interface) from the output of the
modality processors.

In our joint interpretation scheme, the user intent is rep-
resented by a frame consisting of slots specifying pieces of
information such as the action to carry out or the parameters
for that action. Recognition output from the modality pro-
cessors are parsed into partially filled frames that are merged
together to produce the combined interpretation as described
in [5]. This technique leads to uniform handling of high-
level information from all input sources, which is very
important for modularity and extensibility. To add another
input modality we need only provide a module to convert
low-level recognizer output to a partially filled frame to be
merged with others. In addition, context information can be
retained across input events by merging with previous inter-
pretation frames.

6. APPLICATIONS
We have applied our Java front-end to many web-based

multimodal interfaces. We describe two examples in this
paper: Voice Pen Directory Assistant System and QuickDoc.

Voice Pen Directory Assistant System was designed to
find a person’s information, such as telephone number, email
address, homepage address, using speech and handwriting as
inputs. A user can use mouse or pen (if a touch sensitive
screen is available) to write the name to look for. The Java
front-end will send the query back to the server. The server
will perform recognition and database query and send the
results back to the user. Alternatively, the user can use
speech as input if the computer has the audio input ability.
This system has been used for locating people at School of
Computer Science in Carnegie Mellon University.

QuickDoc demonstrates a multimodal interface for
medical applications [3]. QuickDoc can be used to assist a
user in performing a repetitive task with speed and conve-
nience. For example, a doctor can go through a series of
images such as X-rays or computer-aided iconography
scans, quickly identify an anomalous area, label the area

with the name of a disease or condition, and attach relevant
comments. The end product is an HTML report that summa-
rizes the doctor’s findings in a compact table listing the
annotated images, the corresponding preliminary diagnoses,
and automatically generated hotlinks to relevant sites based
on the diagnoses. QuickDoc is now fully functional in a web
environment.

7. CONCLUSION
In this paper, we have presented the designs and appli-

cations of our Java front-end for web-based multimodal
human-computer interaction. We have also addressed some
of the problems that have arisen during its implemention and
our solution. We demonstrated that a multimodal human-
computer interface can efficiently access, create, manipulate
and disseminate multimedia information on the WWW.

8. ACKNOWLEDGEMENTS
This research was sponsored by the DARPA under the
Department of the Navy, Naval Research Office under grant
number N00014-93-1-0806. Views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the
Navy or the U.S. Government.

9. REFERENCES
[1] Vo, M.T. and Waibel, A., “A Multimodal Human-Com-

puter Interface: Combination of Speech and Gesture
Recognition,” Adjunct Proc. InterCHI’93 (Amsterdam,
The Netherlands).

[2] Waibel, A., Vo, M.T., Duchnowski, P., and Manke, S.,
“Multimodal Interfaces,” Artificial Intelligence Review,
Special Volume on Integration of Natural Language and
Vision Processing, McKevitt, P. (Ed.), Vol. 10, Nos. 3-4,
1995.

[3] Waibel, A., Suhm, B., Vo, M.T. Yang, J., “Multimodal
interfaces for multimedia information agents,” Proc. of
ICASSP 97.

[4] Suhm, B., Geutner, P., Kemp, T., Lavie, A., Mayfield,
L., McNair, A., Rogina, I., Schultz, T., Sloboda, T.,
Ward, W., Woszczyna, M., and Waibel, A., “JANUS:
Towards Multilingual Spoken Language Translation,”
Proc. ARPA SLT Workshop 95 (Austin, Texas).

[5] Vo, M.T. and Wood, C., “Building and application
framework for speech and pen input integration in mul-
timodal learning interfaces,” Proc. ICASSP’96 (Atlanta,
GA).

[6] Manke, S., Finke, M., and Waibel, A., “The Use of
Dynamic Writing Information in a Connectionist On-
Line Cursive Handwriting Recognition System,”
Advances in Neural Information Processing Systems 6,
Morgan Kaufmann, 1994.


