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Abstract 

We describe and experimentally evaluate 
an efficient method for automatically de- 
termining small clause boundaries in spon- 
taneous speech. Our method applies an ar- 
tificial neural network to information about 
part of speech and trigger words. 
We find that with a limited amount of data 
(less than 2500 words for the training set), 
a small sliding context window (+/—3 to- 
kens) and only two hidden units, the neural 
net performs extremely well on this task: 
less than 5% error rate and F-score (com- 
bined precision and recall) of over .85 on 
unseen data. 
These results prove to be better than those 
reported earlier using different approaches. 

1 Introduction 

In the area of machine translation, one important in- 
terface is that between the speech recognizer and the 
parser. In the case of human-to-human dialogues, 
the speech recognizer’s output is a sequence of turns 
(a contiguous segment of a single speaker's utter- 
ance) which in turn can consist of multiple clauses. 

Lavie et al. (1996) discuss that using smaller units 
rather than whole turns can greatly facilitate the 
task of the parser since it reduces the complexity of 
its input. 
The problem is thus how to correctly segment an 

utterance into clauses. 

The segmentation procedure described in Lavie 
et al. (1996) uses a combination of acoustic infor- 
mation, statistical calculation of boundary-trigrams, 
some highly indicative keywords and also some 
heuristics from the parser itself. 

Stolcke and Shriberg (1996) studied the relevance 
of several word-level features for segmentation per- 
formance on the Switchboard corpus (see Godfrey 
et al. (1992)). Their best results were achieved by 
using part of speech n-grams, enhanced by a couple 
of trigger words and biases. 
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Another, more acoustics-based approach for turn 
segmentation is reported in Takagi and Itahashi 
(1996). 
Palmer and Hearst (1994) used a neural network 

to find sentence boundaries in runing text, i.e. to 
determine whether a period indicates end of sentence 
or end of abbreviation. The input to their network is 
a window of words centered around a period, where 
each word is encoded as a vector of 20 reals: 18 val- 
ues corresponding to the word’s probabilistic mem- 
bership to each of 18 classes and 2 values represent- 
ing whether the word is capitalized and whether it 
follows a punctuation mark. Their best result of 
98.5% accuracy was achieved with a context of 6 
words and 2 hidden units. 

In this paper we bring their idea to the realm of 
speech and investigate the performance of a neural 
network on the task of turn segmentation using parts 
of speech, indicative keywords, or both of these fea- 
tures to hypothesize segment boundaries. 

2 Data preparation 

For our experiments we took as data the first 1000 
turns (roughly 12000 words or 12 full dialogues) of 
transcripts from the Switchboard corpus in a version 
that is already annotated for parts of speech (e.g. 
noun, adjective, personal pronoun, etc.). 
The definition of a small clause which we wanted 

the neural network to learn the boundaries of is 
as follows: Any finite clause that contains an in- 
flected verbal form and a subject (or at least either 
of them, if not possible otherwise). However, com- 
mon phrases such as good bye, and stuff like that, 
etc. are also considered small clauses. 

Preprocessing the data involved (i) expansion of 
some contracted forms (e.g. I’m —+ I am), (ii) correc- 
tion of frequent tagging errors, and (iii) generation 
of segment boundary candidates using some simple 
heuristics to speed up manual editing. 
Thus we obtained a total of 1669 segment bound- 

aries, which means that on average approximately 
after every seventh token (i.e. 14% of the text) there 
is a segment boundary.



3 Features and input encoding 

3.1 Features 

The transcripts are tagged with part of speech 
(POS) data from a set of 39 tags! and were pro- 
cessed to extract trigger words, i.e. words that are 
frequently near small clause boundaries (<b>). Two 
scores were assigned to each word w in the transcript 
according to the following formulae: 

SCOrEpre(wW) = C(w<b>) P(w<b>|w) 
scorepost(w) = C(<b>w) P(<b>w|w) 

where C’ is the number of times w occurred as 
the word (before/after) a boundary, and P is the 
Bayesian estimate for the probability that a bound- 
ary occurs (after/before) w. 

This score is thus high for words that are likely 
(based on P) and reliable (based on C’) predictors of 
small clause boundaries. 
The pre- and post-boundary trigger words were 

then merged and the top 30 selected to be used as 
features for the neural network. 

3.2 Input encoding 

The information generated for each word consisted 
of a data label (a unique tracking number, the actual 
word, and its part of speech), a vector of real values 
24, ...,@e and a label (++ or ‘—’) indicating whether 
a segment boundary had preceded the word in the 
original segmented corpus. 
The real numbers 2}, ...,2¢ are the values given as 

input to the first layer of the network. We tested 
three different encodings: 

1. Boolean encoding of POS: a; (1 <i < c= 39) 
is set to 0.9 if the word’s part of speech is the 
i*® part of speech, and to 0.1 otherwise. 

2. Boolean encoding of triggers: aj (1 <i<c¢= 
30) is set to 0.9 if the word is the ® trigger, 
and to 0.1 otherwise. 

3. Concatenation of boolean POS and trigger en- 
codings (c = 39 + 30 = 69). 

4 The neural network 

We use a fully connected feed-forward three-layer 
(input, hidden, and output) artificial neural net- 
work and the standard backpropagation algorithm 
to train it (with learning rate 7 = 0.3 and momen- 
tum a = 0.3). 
Given a window size of W and c features per en- 

coded word, the input layer is dimensioned to c x W 
units, that is W blocks of ¢ units. 
The number of hidden units (h) ranged in our ex- 

periments from | to 25. 

*The tagset is based on the standard tagsets of the 
Penn Treebank and the Brown Corpus. 
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Figure 1: Training the neural network. (Net with 
POS and trigger encoding, W = 6, h = 2, 0 =0.7) 

As for the output layer, in all the experiments 
it was fixed to a single output unit which indicates 
the presence or absence of a segment boundary just 
before the word currently at the middle of the win- 
dow. The actual threshold to decide between seg- 
ment boundary and no segment boundary is the pa- 
rameter 0 which we varied from 0).1 to 0.9. 
The data was presented to the network by sim- 

ulating a sliding window over the sequence of en- 
coded words, that is by feeding the input layer with 
the cx W encodings of, say, words wj...w;4w—1 and 
then, as the next input to the network, shifting the 
values one block (¢ units) to the left, thereby admit- 
ting from the right the c values corresponding to the 
encoding of wy. Note that at the beginning of 
each speaker turn or utterance the first ¢ x (4 — 1) 
input units need be padded with a “dummy” value, 
so that the first word can be placed just before the 
middle of the window. Symmetrically, at the end of 
each turn, the last c x (4 — 1) input units are also 
padded. 

5 Results and discussion 

We created two data sets for our experiments, all 
from randomly chosen turns from the original data: 
(i) the “small” data set (a 20:20:60(%) split be- 
tween training, validation, and test sets), and (ii) 
the “large” data set (a 60:20:20(%) split). 

First, we ran 180 experiments on the “small” 
data set, exhaustively exploring the space defined 
by varying the following parameters: 

¢ encoding scheme: POS only, triggers only, POS 
and triggers. 

« window size: W € {2,4,6,8} 
number of hidden units: h € {2,10, 25} 
output threshold: 0 € { 0.1, 0.3, 0.5, 0.7, 0.9 } 
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Figure 2: Precision vs. recall tradeoff. (On unseen 
data, net with W =6, h=2,0.1<0 <0. 
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Figure 3: F-scores as a function of the output unit 
threshold 0. (On unseen data, net with W = 6, 

h=2) 

Precision (number of correct boundaries found 
by the neural network divided by total number of 
boundaries found by the neural network), recall 
(number of correct boundaries found by the neu- 
ral network divided by true number of boundaries 
in the data) and F-score (defined as 223ssion-tecall) precision}recall 
were computed for each training, validation and test 
sets. 

To be fair, we chose to take the epoch with the 
maximum F-score on the validation set as the best 
configuration of the net, and we report results from 
the test set only. Figure 1 shows a typical train- 
ing/learning curve of a neural network. 
The best performance was obtained using a net 

with 2 hidden units, a window size of 6 and the out- 
put unit threshold set to 0.7. The following results 
were achieved. 

F-score 
0.852 

recall 
0.860 

classification rate 
95.8% 

precision 
0.855 

Some general trends are observed: 
« As the window size gets larger, the performance 

increases, but it seems to peak at around size 6. 
Fewer hidden units yield better results; gener- 
ally we get the best results for just two hidden 
units. 
‘The global performance as measured by the pro- 
portion of correct classifications (i.e. both ‘+’ 
and ‘—’) increases as the F-score increases. 
High performance (correct classifications >95%, 
F-score >0.85) is easily achieved. 
The optimal threshold for a high F-score lies in 
the 0.5 <0 < 0.7 interval. 
Varying the threshold leads to a tradeoff of pre- 
cision vs. recall. 

To illustrate the last point, we present a graph 
that shows a comparison between the three encod- 
ing methods used, for a window size of 6 (Figure 2). 
The combined method is only slightly better than 
the POS method, but they both are clearly superior 
to the trigger-word method. Still it is interesting 
to note that quite a reasonable performance can be 
obtained just by looking at the 30 most indicative 
pre- and post-boundary trigger-words. Noteworthy 
is also the behavior of the precision—recall curve 
with our method a high level of recall can be main- 
tained even as the output threshold is increased to 
augment precision. 

In Figure 3, we plot the F-score against the thresh- 
old. Whereas for the encodings POS only and POS 
and triggers, the peaks are in the region between 
0.5 and 0.7, for the triggers only encoding, the best 
F-scores are achieved between 0.3 and 0.5. 
We also ran another 30 experiments with the 

“large” data set focusing on the region defined by the 
parameters that achieved the best results in the pre- 
ceding experiments (i.e. window size 6 or 8, thresh- 
old between 0.5 and 0.7, number of hidden units be- 
tween | and 10). Under these constraints, F-scores 
vary slightly, always remaining between .85 and .88 
for both validation and test sets. 
Within this region, therefore, several neural nets 

yield extremely good performance. 
While Lavie e¢ al. (1996) just report an im- 

provement in the end-to-end performance of the 
JANUS speech-to-speech translation system when us- 
ing their segmentation method but do not give de 
tails the performance of the segmentation method 
itself, Stolcke and Shriberg (1996) are more explicit 
and provide precision and recall results. Moreover 
Lavie et al. (1996) deal with Spanish input whereas 
Stolcke and Shriberg (1996), like us, drew their data 
from the Switchboard corpus. 



Type Harmful? Reason Context. 

Talse positive no 
false positive yes 
false negative yes 
false positive? 
false positive yes 
false negative yes 
false positive no 
false negative no 
false negative yes 
false positive _no 

Trigger word 
non-dausal and 
speech repair 
trigger word 
non-dausal and 
speech repair 
CORRECT 

CORRECT 

trigger word 
embedded relative clause 

to work <b> and * when Thad 
work off * and on 
<b> but * and they are 

he you know * gets to a certain 
if you like trip * and fall or something 
<b> we * that’s been 
<b> bul i think * its relevance 
<b> and she * she was 
into nursing homes * die very quickly 
wait lists * and all 

Table 1: Sample of misclassifications (on unseen data, net with encoding of POS and triggers, W = 6, h = 2, 
0 =0.7). False positive indicates an instance where the net hypothesizes a boundary where there is none. 
False negative indicates an instance where the net fails to hypothesize a boundary where there is one. A 
‘<b>’ indicates a small clause boundary. A ‘*’ indicates the location of the error. 

Thus here we compare our approach with that of 
Stolcke and Shriberg (1996). They trained on 1.4 
million words and in their best system, achieved pre- 
cision .69 and recall .85 (which corresponds to an 
F-score of .76). We trained on 2400 words (i.e. over 
500 times less training data), and we achieved an 
F-score of .85 (i.e. a 12% improvement). 

6 Error analysis 

Table | shows 10 representative errors that one of 
the best performing neural network made on the test 
set. 25 randomly selected errors were used to do the 
error analysis, which consisted of 14 false positives 
and |] false negatives. 8 of the errors were errors we 
considered to be harmful to the parser, 3 were errors 
of unknown harmfulness, and the remaining 14 were 
considered harmless. 
Of the harmful errors, three were due to the word 

and being used as a conjunction in a non-clausal 
context, two were due to a failure to detect a speech 
repair, and one was due to an embedded relative 
clause (most people that move into nursing homes 
* die very quickly). 
The network was also able to correctly identify 

some mistagged data (marked as CORRECT in Ta- 
ble 1). 

These results suggest that adding features rele- 
vant to speech repairs (such as whether words were 
repeated) or features relevant to detecting the use 

of and as a non-clausal conjunct might be useful in 
achieving better accuracy. 

7 Conclusion 

We have shown that using neural networks for auto- 
matically segmenting turns in conversational speech 
into small clauses reaches a level of less than 5% error 
rate and achieves good precision/recall performance 
as measured by an F-score of more than .85. 

These results outperform those obtained by other 
methods as reported in the literature. 

Future work on this problem includes issues such 
as optimizing the set of POS tags, adding acous- 
tic/prosodic features to the neural network, and us- 
ing it for pro-drop languages like Spanish to as- 
sess the relative importance of POS vs. trigger word 
weights and to examine the performance of the sys- 
tem for languages where POS tags may not be as 
informative as they are for English. 
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