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We describe a new approach for statistical modeling and detection of discourse struc-
ture for natural conversational speech. Our model is based on 42 ‘Dialog Acts’ (DAs),
(question, answer, backchannel, agreement, disagreement, apology, etc). We labeled
1155 conversations from the Switchboard (SWBD) database (Godfrey et al. 1992) of
human-to-human telephone conversations with these 42 types and trained a Dialog Act
detector based on three distinct knowledge sources: sequences of words which charac-
terize a dialog act, prosodic features which characterize a dialog act, and a statistical
Discourse Grammar. Our combined detector, although still in preliminary stages, al-
ready achieves a 65% Dialog Act detection rate based on acoustic waveforms, and 72%
accuracy based on word transcripts. Using this detector to switch among the 42 Dialog-
Act-Specific trigram LMs also gave us an encouraging but not statistically significant
reduction in SWBD word error.

1 Introduction
The ability to model and automatically detect discourse structure is essential as we
address problems like understanding spontaneous dialog (a meeting summarizer
needs to know who said what to who), building human-computer dialog systems (a
conversational agent needs to know whether it just got asked a question or ordered to
do something), and transcription of conversational speech (utterances with different
discourse function also have very different words). This paper describes our pre-
liminary work (as part of the 1997 Summer Workshop on Innovative Techniques in
LVCSR) on automatically detecting discourse structure for speech recognition and
understanding tasks.

Table 1 shows a sample of the kind of discourse structure we are modeling and
detecting. Besides the usefulness of discourse structure detection for speech under-
standing, discourse structure can be directly relevant for speech recognition tasks.
For example in the state-of-the-art HTK recognizer we used, the word do has an
error rate of 72%. But do is in almost every Yes-No-Question; if we could detect
Yes-No-Questions (for example by looking for utterances with rising intonation) we
could increase the probability of do and hence decrease the error rate.

There are many excellent previous attempts to build predictive, stochastic models
of dialog structure (Kita et al. 1996; Mast et al. 1996; Nagata and Morimoto 1994;
Reithinger et al. 1996; Suhm and Waibel 1994; Taylor et al. 1998; Woszczyna and
Waibel 1994; Yamaoka and Iida 1991), and our effort is in many ways inspired by



Spkr Dialog Act Utterance

A Wh-Question What kind do you have now?
B Statement Uh, we have a, a Mazda nine twenty nine and a Ford

Crown Victoria and a little two seater CRX.
A Acknowledge-Answer Oh, okay.
B Opinion Uh, it’s rather difficult to, to project what kind of, uh, -
A Statement we’d, look, always look into, uh, consumer reports to see what kind

of, uh, report, or, uh, repair records that the various cars have –
B Turn-Exit So, uh, -
A Yes-No-Quest And did you find that you like the foreign cars better than the domestic?
B Answer-Yes Uh, yeah,
B Statement We’ve been extremely pleased with our Mazdas.
A Backchannel-Quest Oh, really?
B Answer-Yes Yeah.

Table 1: A fragment of a labeled switchboard conversation.

this work, and indeed our group overlaps in personnel with some of these projects.
Our project extends these earlier efforts particularly in its scale (our models were
trained on 1155 dialog-annotated conversations comprising 205,000 utterances and
1.4 million words; an order of magnitude larger than any previous system) and in
focusing on longer, less task-oriented dialogs.
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Figure 1: Outline of Paper and Project

Figure 1 outlines the major stages of our work and of this paper. We begin
by discussing how we manually annotated 1155 conversations with hand-labeled
discourse-tags. We then describe the 3 knowledge sources for dialog act detec-
tion (word-sequences, discourse grammar, and prosody), show how these knowl-
edge sources can be combined, and finally apply the detector to help improve word
recognition of SWBD.

2 Manual Discourse Tagging
In order to tag the 1155 SWBD conversations, we first designed the SWBD-DAMSL

tagset (Jurafsky et al. 1997b) by augmenting the DAMSL tag-set (Core and Allen
1997). Our SWBD-DAMSL tagset consists of approximately 60 groupable labels in



orthogonal dimensions which the labelers combined to produce 220 unique tags for
the 205,000 SWBD utterances. The SWBD conversations had already been hand-
segmented into utterances by the Linguistic Data Consortium ((Meteer et al. 1995);
an utterance roughly corresponds to a sentence). Each utterance thus received ex-
actly one of these 220 tags. The average conversation consisted of 144 turns, 271
utterances, and took 28 minutes for trained CU Boulder grad students to label. The
labeling agreement was 84% ( � = .80; (Carletta 1996)). We then clustered these
220 tags into 42 final tags. All of our experiments were run with this 42-tag tagset.
Table 2 shows the most common tags.

�

Tag Example Count %

Statement Me, I’m in the legal department. 72,824 36%
Backchannel Uh-huh. 37,096 19%
Opinion I think it’s great 25,197 13%
Agree/Accept That’s exactly it. 10,820 5%
Abandoned/Turn-Exit So, -/ 10,569 5%
Appreciation I can imagine. 4,633 2%
Yes-No-Question Do you have to have any special training 4,624 2%
Non-verbal � Laughter � , � Throat clearing � 3,548 2%
Yes answers Yes. 2,934 1%
Conventional-closing Well, it’s been nice talking to you. 2,486 1%
Uninterpretable But, uh, yeah 2,158 1%
Wh-Question Well, how old are you? 1,911 1%
No answers No. 1,340 1%
Response Ack Oh, okay. 1,277 1%
Hedge I don’t know if I’m making 1,182 1%

any sense or not.
Declarative Question So you can afford to get a house? 1,174 1%
Other Well give me a break, you know. 1,074 1%
Backchannel-Question Is that right? 1,019 1%

Table 2: 18 most frequent tags (of 42)

3 Dialog Act Detection
The goal of our dialog act (DA) detection algorithms is to automatically assign the
correct tag from our 42 DA set to each of the presegmented utterance wavefiles.
We achieved a 65% detection accuracy, based on automatic word recognition and
prosodic analysis. This compares with a baseline of 35% if we simply chose the most
frequent dialog act each time. Human labelers were able to do significantly better
(84%). However, note that the human labeling was based purely on word transcripts.
Using actual, rather than recognized words, our DA detection algorithm achieved
72% accuracy, so we can expect substantially improved automatic detection simple
as a result of continually improving recognition accuracy.

Our algorithm is based on combining three sources of knowledge:
�
For many of our experiments we combined the Statement and Opinion classes; these two classes

together comprise 49% of the utterances, but a full 83% of the words in the corpus. As we will see, this
limits the affect our tagging had on word-related metrics like word error.



Prosodic Information: Using prosodic features such as pitch and speaking rate
to choose DA. For example based on the literature we predicted that Yes-No-Questions
would be detectable from their final F0 rise.

Words and Word Grammar: Pick the most likely DA given the word string. For
example, 88.4% of the trigrams “ � start � do you” occur in Yes-No-Questions.

Discourse Grammar: Pick the Dialog Act which is most likely given the sur-
rounding DAs. For example a Command will be Agreed to with probability .23, a
Yes-No-Question will receive a Yes answer with probability .30.

The utterance detection algorithm we describe is based on hand-segmented utter-
ance boundaries. That is, both our training and test sets were segmented by hand
into turns and utterances.

3.1 Prosodic Dialog Act Detection

Extending earlier work by others on the use of prosodic knowledge for dialog act
prediction (Mast et al. 1996; Taylor et al. 1997; Terry et al. 1994; Waibel 1988),
we automatically extracted prosodic features for each utterance, performed various
normalizing and postprocessing, and trained CART decision trees to predict the di-
alog act of an utterance. Our goal was to discriminate classes that were particularly
confusable given only words, and also to understand prosodic feature usage so as
to build future prosodic detectors. We used no word information in extracting or
computing features, other than the location of utterance boundaries which were as-
sumed for all knowledge sources. Features included duration, pause, F0, energy
(RMS and signal-to-noise-ratio), and speaking rate (using a signal processing mea-
sure ‘enrate’ (Morgan et al. 1997)) measures. Because the distribution of DAs was
highly skewed,we downsampled our data to uniform priors (train and test) to train
more discriminate trees.

We built trees to detect specifically confusable dialog acts including Yes-No-
Questions, and Abandoned/Turn Exits. For Yes-No-Questions, for example, a
word-based detector for all 42 types only achieved 32% accuracy. But Yes-No-
Questions are strongly prosodically marked: they generally have a rising F0 con-
tour. Table 3 shows our accuracy for a single prosodic tree for distinguishing Yes-
No-Question from all other dialog acts. We achieved an accuracy (# of correct
classifications / all data) of 70.3% (where chance is 50%).

Test Count Accuracy Perp Entropy � Efficiency

Prior 50.0 2 0.693
Cond. HLD 618 70.3 1.80 0.589 15.0%

Table 3: Results of Yes-No-Question Detection Tree

This Yes-No-Question tree relied mainly on the F0 rise, but also on other fea-
tures; nearly all the main feature types played a role in the trees. For details of
the decision trees, see Shriberg et al. (submitted) and Jurafsky et al. (1997a). In a
number of focussed analyses assuming uniform DA priors, prosody alone allowed
classification significantly above chance. In addition, although space does not permit
discussion, adding prosody to word information significantly improved classification
for the majority of the analyses.



3.2 Word-sequence-based Dialog Act Detection

Word-based DA detection is based on separate trigram language models for each
of the 42 dialog acts, (i.e. one LM for Statements, another for Yes-No-Questions,
another for Backchannels, etc). and choosing the dialog act that assigns the highest
likelihood to the word string (Garner et al. 1996; Peskin et al. 1996). The resulting
LMs were quite distinct from each other, and had a significantly lower perplexity
(66.9) on the test set than the baseline LM (76.8) indicating that the 42 LMs do in
fact capture the lexical distinctions among the 42 dialog acts (see Table 6).

We then used the 42 language models to choose the most likely DA given the
word string, by maximizing over likelihoods of the utterance-words given the utter-
ance (e.g. ��� I lived in Chicago � Statement � ) for each utterance in a conversation and
for each DA. Table 5 in � 3.4 shows that by using the bigram Discourse Grammar
described below we achieve 64.6% utterance detection accuracy using the likeli-
hoods computed via the 2500-best word strings from each utterance (where 35%
is chance). (Using the correct (reference, i.e. cheating) word strings, we achieved
70.6% accuracy).

3.3 Discourse Grammar

Our discourse grammar is a backoff N-gram (Katz 1987) with Witten-Bell discount-
ing (Witten and Bell 1991) which predicts the sequence of dialog acts given the
previous types; the use of N-gram discourse grammars was motivated by previous
work by Kita et al. (1996); Mast et al. (1996); Nagata and Morimoto (1994); Suhm
and Waibel (1994); Taylor et al. (1997); Taylor et al. (1998); Woszczyna and Waibel
(1994); Yamaoka and Iida (1991). For example, in the sample conversation in Ta-
ble 1, the grammar gives the probability of the utterance in Channel A being an
Acknowledge-Answer given that the previous utterance was a Statement on Chan-
nel B and before that was a Wh-Question on Channel A.

N-gram model
n 0 1 2 3

perplexity 42.0 9.0 5.1 4.8

Table 4: DA Perplexity (conditioned on turns).

As Table 4 shows, the discourse grammar does in fact progressively reduce the
perplexity of the utterance detection task as a larger dialog act history is added.
We also explored alternative models for discourse grammar, including maximum
entropy models and cache models. See Jurafsky et al. (1997a) for further details.

3.4 The Combined Dialog Act Detector

We then ran a number of different experiments combining our three knowledge
sources (words, prosody, discourse) for DA detection. The prosodic component
of these combined detection results is still preliminary, because we only had a very
preliminary prosodic detection tree at this point (distinguishing Statements, Ques-
tions, Backchannels, Agreements, and Abandoned from each other and from other
DAs), and also because we are still studying the optimal way to combine different



prosodic classifiers. See Stolcke et al. (submitted) and Jurafsky et al. (1997a) for
the mathematical foundation of our combinations; Table 5 simply shows our final
detection results.

Discourse Accuracy (%)
Grammar Prosody only Rec. Words only Combined

None 38.9 42.8 56.5
Unigram 48.3 61.9 62.6
Bigram 50.2 64.6 65.0

Table 5: Combined utterance detection accuracies.

Using the recognized words together with the bigram discourse grammar ac-
counts for the bulk of our accuracy, although we expect more help from the prosody
as we train more trees.

4 Word Recognition Experiments
We applied our detection algorithm to the SWBD word-recognition task by using
a mixture of the 42 DA-specific LMs to rescore each test-set utterance, and using
the combined detector to set the mixture weights. Table 6 shows word error and
perplexities obtained for the DA-conditioned mixture LM. Also shown are the results
for the baseline LM, and for the ‘cheating’ LM, conditioned on the true DA labels.
WER is reduced by only 0.3% over the baseline, a non-significant change ( ��� � �
� ����� � ).

Model WER (%) Perplexity

Baseline 41.2 76.8
Mixture LM 40.9 66.9
Cheating LM 40.3 66.8

Table 6: Non-significant reduction in SWBD word error.

It is encouraging that the perplexity of the DA-conditioned mixture model is vir-
tually the same as that of the cheating LM. But the cheating experiment shows that
even perfect knowledge of the dialog acts can only be expected to give about a 1
percent reduction in WER. This is mainly because Statements (non-opinion plus
opinion) account for 83% of the words in our corpus (since e.g. backchannels and
answers tend to be short). Table 7 shows, however, that using utterance-specific lan-
guage models can significantly improve WER for some dialog acts, and hence this
approach could prove useful for tasks with a different distribution of utterance types.

5 Conclusions
We have described a new approach for statistical modeling and detection of dis-
course structure for natural conversational speech. Our algorithm has possibilities
for reducing word error in speech recognition. Although the skewed dialog act dis-
tribution limited our maximum word error improvement for the Switchboard task,
improvements for WER of individual dialog acts suggests that the algorithm has



Dialog Act WER Oracle
WER

Improvement
with Oracle

Answer No 29.4 11.8 -17.6%
Backchannel 25.9 18.6 -7.3%
Backchannel Questions 15.2 9.1 -6.1%
Abandoned/Turn-Exit 48.9 45.2 -3.7%
Wh-Questions 38.4 34.9 -3.5%
Yes-No-Questions 55.5 52.3 -3.2%
Statement 42.0 41.5 -0.5%

Table 7: Cheating Error Rates on Specific Dialog Acts

potential to improve recognition on other tasks (like conversational agents) where
questions and other non-statements are more common. Furthermore, by combining
our three knowledge sources, we achieved significant improvements in our ability
to automatically detect dialog acts, which will help address tasks like understanding
spontaneous dialog and building human-computer dialog systems.
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