
CONTEXT-DEPENDENT HYBRID HME/HMM SPEECH RECOGNITION USINGPOLYPHONE CLUSTERING DECISION TREESJ�urgen Fritsch, Michael Finke, Alex Waibelfritsch,�nkem,waibel@ira.uka.deInteractive Systems LaboratoriesUniversity of Karlsruhe | GermanyCarnegie Mellon University | USAABSTRACTThis paper presents a context-dependent hybrid con-nectionist speech recognition system that uses a set ofgeneralized hierarchical mixtures of experts (HME) to es-timate context-dependent posterior acoustic class prob-abilities. The connectionist part of the system is or-ganized in a modular fashion, allowing the distributedtraining of such a system on regular workstations. Con-text classes are based on polyphonic contexts, clusteredusing decision trees which we adopt from our continu-ous density HMM recognizer JANUS [8]. The systemis evaluated on ESST, an english speaker-independentspontaneous speech database. Context dependent mod-eling is shown to yield signi�cant improvements over sim-ple context-independent modeling, requiring only smalladditional overhead in terms of training and decodingtime. 1. INTRODUCTIONIt was recently shown by a variety of researchers (eg.[1, 2, 4]) that hybrid HMM systems which rely on con-nectionist discriminative acoustic modeling can be com-petitive with traditional mixtures of Gaussians basedHMM systems, yet requiring orders of magnitude lessparameters. Such systems are attractive, because theyare compact and o�er faster decoding speeds than stan-dard systems. Also, they facilitate the incorporation ofadditional knowledge sources into the process of com-puting acoustical scores (e.g. using a window of inputframes). However, training the network(s) of hybrid sys-tems generally requires parallel implementations and isoften reported to take several days, which is more thanone order of magnitude higher than the training time oftraditional systems.We present a system based on modular neural net-works, speci�cally generalized hierarchical mixtures ofexperts (HME) [5, 6], where gates and experts in theHME tree nodes can contain arbitrary classi�ers, as longas they follow a multinomial probability model. Themodular aspect of HME's bears similarities to the Meta-Pi paradigm [3] with the di�erence, that the trainingdata is not partioned a-priori among experts in an HME- Instead, the network learns smooth feature space par-

tionings without supervision by maximizing the likeli-hood of a generative statistical model. The HME ar-chitecture and its underlying statistical framework o�erfaster training times than those observed in MLP andrecurrent neural network based hybrid systems. In fact,it can be trained in a reasonable amount of time (approx.2-3 times real-time for one of 2-5 training iterations) ona set of regular workstations.Modeling of subword units in context is a standardtechnique which boosts performance of current state-of-the-art HMM recognizers signi�cantly. Relatively sim-ple context-independent hybrid systems were reportedto be competitive with more sophisticated context-dependent mixture-of-Gaussian systems [4], but it wasshown that hybrid systems also bene�t from contextmodeling [2, 7, 9]. In this paper, we report �rst resultsof our ongoing work on connectionist context-modelingfor our hybrid HME/HMM system.2. GENERALIZED HIERARCHICALMIXTURES OF EXPERTSJordan and Jacobs [5, 6] introduced the hierarchical mix-ture of experts as a modular neural network for su-pervised learning using the divide-and-conquer strategy.The learning task is divided in sets of overlapping regionsby a tree-organized hierarchy of gating networks. Expertnetworks at the leaves of the tree perform the learningtask in their speci�c region of the input space. Expertoutputs are blended by the gating networks and proceedup the tree to yield the �nal output. Expert and gatingnetworks parameters are jointly estimated in order tomaximize the likelihood of a generative model, that is,the construction of overlapping regions in which expertsact requires no supervision and is part of the learningalgorithm. It was shown, that an HME can model dis-continuities in the input-output mapping much betterthan traditional monolithic neural networks.Fig. 1 shows the structure of a binary branching HMEof depth 2. The output vector of such an HME is com-puted according to� =Xi gi(x)Xj gjji(x)�ij(x)



where gi(x) and gjji(x) are the outputs of gating net-works and �ij(x) are the outputs of the expert networks.In our case, HME's are being used in a hybrid NN/HMMspeech recognition framework as classi�ers, estimatingposterior class probabilities. For classi�cation, expertand gating netorks in an HME compute multinomialprobability models and are therefore parameterized us-ing the softmax non-linearity ('canonical link' in GLIMtheory): zi(x) = exp yi(x)Pj exp yj(x)In [5, 6] the yi(x) are parameterized as linear mod-els, leading to an e�cient EM training algorithm (itera-tively re-weighted weighted least squares) for the hierar-chy. However, we discovered that it is sometimes advan-tageous to use more complex parameterizations for gatesand experts, eg. multi-layer feed-forward architectures.Such architectures can still be trained e�ciently usinggeneralized EM algorithms with on-line updates.
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Fig. 1: Hierarchical Mixtures of Experts3. CONNECTIONIST CONTEXTMODELINGConsider an HMM based speech recognition system thatmodels sub-word units (eg. phones, clustered triphonesor polyphones) using m-state left-right topologies. Sucha multi-state HMM model requires the computation ofstate, monophone and context dependent likelihoodsp(xjcj ; !i; sk) for each frame x, where sk(1 � k � m)denotes the HMM state, cj the context class and !i themonophone of a context-dependent acoustic model.In traditional HMM system, the above likelihoods aremodeled independently, estimating separate parametricdistributions, usually mixtures of Gaussians, for eachmodel. Applying Bayes' rule and factoring the condi-tional probabilities, we can reformulate the problem in away that allows the discriminative estimation of scaledlikelihoods in terms of a-posteriori probabilities

p(xjcj ; !i; sk) = p(cj ; !i; skjx)p(x)P (cj ; !i; sk)= p(cj ; !ijsk;x)P (cj ; !ijsk) p(skjx)P (sk) p(x)= p(cj j!i; sk;x)P (cj j!i; sk) p(!ijsk;x)P (!ijsk) p(skjx)P (sk) p(x)All the terms in the denominators are prior probabili-ties, which can be estimated by relative frequencies. Theframe probability p(x) can be dropped, when seeking themodel with maximum likelihood. It remains to estimatethe posteriors in the numerators.Starting from the right side, the posteriors p(skjx) canbe computed by a single neural network, discriminatingbetween the states in an m-state HMM topology. There-fore, we call such a network a state discriminating net-work (SDN).The posteriors p(!ijsk;x) are conditioned on theHMM state and the input frame and can be computedby a set of m networks, one for each HMM state. Givena particular HMM state sk, the corresponding networkmust be trained to discriminate between the monophones!i, thus it'll estimate pk(!ijx).The posteriors p(cj j!i; sk;x) are conditioned on theinput frame x, the HMM state sk and the monophone!i. They can be computed by a matrix of networks con-sisting of m times n networks (where n is the number ofmonophones). Each of these networks discriminates be-tween all the context classes of a speci�c monophone in aspeci�c state. The network for state sk and monophone!i therefore computes pki(cj jx).The following �gure gives an overview of the structureof a set of posterior probability estimators (in our caseHME's) for a 3-state HMM topology. Each box repre-sents a single HME:
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HME’sFig. 2: Overview: Structure of HME setIn order to compute a speci�c context-dependent pos-terior class probability for an m-state HMM topology,



a sequence of three HME evaluations is necessary (de-picted as black boxes in the above �gure). The result-ing network outputs are divided by the respective classpriors before being multiplied together to form an es-timate of the scaled observation likelihood. Smoothingfactors might be introduced for the context-dependentHME's, in order to accomodate di�erent dynamic rangesof context-dependent and context-independent networkoutputs.4. POLYPHONE CONTEXT CLASSESFor each monophone in each state, we need to de�ne aset of context classes which are to be modeled by themethod described above. As in [7], we use phonetic de-cision trees to cluster phonetic contexts. However, ourwork di�ers in two aspects: (1) our system clusters poly-phone instead of just triphone contexts, (2) the decisiontrees are adopted from a continuous density HMM sys-tem. The splitting criterion for growing the decision treesis based on weighted gain in entropy between the discreteprobability distributions (the mixture coe�cients in theGaussian mixtures) before and after a potential split.D(p;pl;pr) = nlHl(pl) + nrHr(pr)� nH(p)with Hl(pl) = �Xi pli log pliHr(pr) = �Xi pri log priH(p) = �Xi pi log piwhere p is the vector of mixture coe�cients beforeand pl;pr are the vectors of mixture coe�cients result-ing from the separate modeling in the two children nodesafter a split. Potential splits are generated by askingphonetic questions in polyphonic contexts, with the re-striction of only one phone across word boundaries. Thefollowing �gure shows an example of such a cluster tree.Internal nodes contain phonetic questions (numbers inquestions are positions relative to the current mono-phone), leaves contain model names.After the polyphone clustering decision tree has beengrown within the standard HMM system, a set of cor-responding context expert HME's for the hybrid systemcan be build and trained. In the case of the tree in Fig.3, we would create and train an HME with 9 outputnodes (one for each context class).5. SMOOTHING CONTEXT POSTERIORSIn order to compensate di�erent dynamic ranges ofmonophone and context posteriors, we are using asmoothing method for context-dependent posteriorsbased on a binomial model. The likelihood estimationis modi�ed to include a monophone and state dependentscaling factor 
ik with 0:0 � 
ik � 1:0:
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Fig. 3: Example: Polyphone Cluster Tree for middle state ofmonophone AXp(cj ; !i; skjx) = �pCDijk �
ik �pCIik �1�
ikwith pCDijk = p(cj j!i; sk;x)and pCIik = p(!ijsk;x) p(skjx)In log-space, this method of smoothing simpli�es toa linear interpolation between the two logarithmizedposterior estimates. A smoothing factor 
 = 0:5 cor-responds to the original likelihood estimation, wherecontext-dependent and context-independent posteriorsare weighted equally. As 
 goes towards zero, the contri-bution of the context-dependent HME's is reduced. For
 = 0:0 the system degenerates to a context-independentsystem, context-dependent posterior estimates are fullysuppressed.Weighting factors 
ik can be estimated iteratively us-ing stochastic gradient descent to minimize a frame clas-si�cation error function. Using MSE E(t) = 0:5[p(t)ijk �q(t)ijk]2, one can derive the following update rule:
(t+1)ik = 
(t)ik � ��(t)ikwith �(t)ik = (p(t)ijk � q(t)ijk)p(t)ijk(log pCDijk � log pCIik )where � is a small learning rate, q(t)ijk is the desiredoutput and p(t)ijk is the smoothed posterior estimate.6. EVALUATIONThe hybrid HME/HMM system was implemented aspart of the JANUS [8] HMM recognizer and evaluatedon the English Spontaneous Scheduling Task (ESST), a2500 word spontaneous speech database containing over25 hours of speech. The system uses 3-state left-right



HMM's and 51 monophones. The connectionist partconsists of one state discriminating HME, 3 monophoneHME's and 3x51 context expert HME's. To reduce train-ing and testing complexity, our context HME's consistof only one multinomial GLIM node. This allows us totrain the context HME's in about 4-6 hours on a stan-dard workstation. For each CI system, we evaluated twocontext systems with 500 and 1000 context classes, re-spectively. For the CI systems, we experimented withfour di�erent architectures: Two GLIM-based HME sys-tems, one with HME's of depth 1, branching factor 16,the other with HME's of depth 2, branching factor 4,and two MLP-based HME systems with HME's of depth1, branching factor 4. Training of these HME's took be-tween 24 and 40 hours, also on standard workstations.The HME's were trained along labels which were gen-erated by our continuous-density HMM recognizer. Thefollowing table shows results for the di�erent systems,numbers are word accuracies (WA). The system nameis encoded as [node-parameterization]-[depth]-[branchingfactor] (GD denotes a gender-dependent system).CI CD-500 CD-1000GLIM-1-16 57.5% 60.6% 63.0%#param 370k 420k 510kGLIM-2-4 57.7% 60.8% 63.8%#param 420k 500k 580kMLP-1-4 60.8% 61.7% 64.1%#param 962k 1.06M 1.14MMLP-1-4-GD 63.2% 66.5% 68.3%#param 2.0M 2.16M 2.32MWe achieved our best results with the GD-MLP-basedHME's. Note, that the additional context modeling im-proves performance by as much as 10.3 %, relative tothe CI system. A continuous density HMM JANUS sys-tem which models 5 times more context classes (5000)achieves 73.1%WA on this task (containing 4.26M acous-tic parameters) at the expense of higher decoding timerequirements. Decoding speed is about 2-5 times fasterfor the hybrid system.We started to investigate the e�ect of smoothing ofcontext-dependent posterior estimates as proposed ear-lier. Here, we report �rst results, where we used a singlesmoothing factor 
 = 
ik for all context HME's.The e�ect of this kind of smoothing can be seen in Fig.4, which shows the word accuracy for di�erent globalsmoothing factors applied to the MLP-1-4 CD-1000 sys-tem. A smoothing factor of 
 = 0:8 yielded an absoluteincrease in WA of 1.1%.7. CONCLUSIONSWe presented a highly modular context-dependent hy-brid HMM system, which outperforms its context-independent version signi�cantly. This encourages us tofurther investigate and improve the hybrid system. The
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Fig. 4: Smoothing context-dependent posteriorsultimate goal is, to improve overall performance by com-bining HME- and Gaussians-based scoring the same way,expert networks are combined in an HME.REFERENCES[1] Bourlard, H., Morgan, N. (1994) Connectionist SpeechRecognition { A Hybrid Approach. Kluwer AcademicPress, 1994.[2] Franco, H., Cohen, M., Morgan, N., Rumelhart, D. &Abrash V. (1994) Context-dependent connectionist prob-ability estimation in a hybrid Hidden Markov Model {Neural Net speech recognition system. Computer Speechand Language, Vol. 8, No 3, 211-222, July 1994.[3] Hampshire II, J. B., Waibel A. H. (1989) The Meta-PiNetwork: Building Distributed Knowledge Representa-tions for Robust Pattern Recognition Tech. Rep. CMU-CS-89-166, Carnegie Mellon University, Pittsburgh PA,August 1989.[4] Hochberg, M. M., Cook, G. D., Renals, S. J., Robinson,A. J. & Schechtman, R. S. (1995) The 1994 ABBOTHybrid Connectionist-HMM Large-Vocabulary Recogni-tion System. In Spoken Language Systems TechnologyWorkshop, 170-176, ARPA, Jan. 1995.[5] Jordan, M. I., Jacobs, R. A. (1992) Hierarchies of adap-tive experts. In Advances in Neural Information Process-ing Systems 4, J. Moody, S. Hanson & R. Lippmann,eds., pp. 985-993. Morgan Kaufmann, San Mateo, CA.[6] Jordan, M. I., Jacobs, R. A. (1994) Hierarchical Mixturesof Experts and the EM algorithm., Neural Computation6, 181-214, MIT Press.[7] Kershaw, D. J., Hochberg, M. M. & Robinson, A. J.(1995) Context-Dependent Classes in a Hybrid Recur-rent Network-HMM Speech Recognition System. Tech.Rep. CUED/F-INFENG/TR217, Cambridge UniversityEngineering Department, Cambridge, England.[8] Waibel et. al. (1996) JANUS-II - Advances in Spon-taneous Speech Translation. Internat. Conf. Acoustics,Speech and Signal Proc., May 1996, Atlanta, Georgia.[9] Zhao, Y., Schwartz, R., Sroka, J. & Makhoul, J. (1995)Hierarchical Mixtures of Experts Methodology Applied toContinuous Speech Recognition. Internat. Conf. Acous-tics Speech and Signal Proc., Vol 5, 3443-3446, May 1995.


