
SPEAKER NORMALIZATION AND SPEAKER ADAPTATION{ A COMBINATION FOR CONVERSATIONAL SPEECH RECOGNITIONPuming Zhan, Martin Westphal, Michael Finke and Alex WaibelInteractive Systems LaboratoriesCarnegie Mellon UniversityUniversity of Karlsruhe, GermanyEmail: fzhan, ahwg@cs.cmu.eduABSTRACTSpeaker normalization and speaker adaptation are twostrategies to tackle the variations from speaker, channel,and environment. The vocal tract length normalization(VTLN) is an e�ective speaker normalization approachto compensate for the variations of vocal tract shapes.The Maximum Likelihood Linear Regression(MLLR) is arecent proposed method for speaker-adaptation. In thispaper, we propose a speaker-speci�c Bark scale VTLNmethod, investigate the combination of the VTLN withMLLR, and present an iterative procedure for decodingthe combined system of VTLN and MLLR. The resultsshow that: (1) the new VTLN method is very e�ectivewith which the word error rate can be reduced up to 11%;(2) the combination of VTLN and MLLR can provide upto 15% word error reduction; (3) both VTLN and MLLRare more e�ective for the push-to-talk data than for thecross-talk data.1 INTRODUCTIONAlmost all speech recognizers are, in some extent, sen-sitive to the variations of speakers and/or environment.The performance of a current state-of-the-art speech recog-nition system could vary largely in practical use becauseof these variations. The speaker-dependent speech recog-nition system comes from the speaker-dependent speechsignal. The reason that the speech signal is speaker-dependent is very complex. It is not only related to thephysiological di�erences of speakers, but also related tothe linguistic di�erences [1]. But it is generally agreedthat one of the major source of inter-speaker variance isthe vocal tract shape, especially the vocal tract length(VTL) [2, 3]. Therefore, some researchers have been de-voted to the vocal tract length normalization (VTLN) forspeaker normalization [1, 2, 3, 4, 5, 6]. Generally speak-ing, two issues are involved in VTLN: (1) Given the speechdata from a speaker, how to obtain the warping factor fornormalization; (2) Given a warping factor, how to do thenormalization; The warping factors could be obtained viaformant calculation as in [2, 3, 5], or via line search asin [4, 6]. The normalization could be implemented in theFourier spectrum domain as in [2, 5, 6], or in the Barkdomain as in [3, 4]. We used the VTLN based on Fourierspectrum warping in [7], and estimated the warping factorvia formant calculation or line search. We obtained up to10% word error reduction with the line searching warpingfactor, and did not get any improvement with the formantmethod. The Fourier spectrum warping VTLN has some

disadvantages, such as, exists the bandwidth mismatch,the need to specify the warping rule, the need to inter-polate the warped spectrum, etc. Therefore, we proposea speaker-speci�c Bark scale VTLN in this paper, withwhich those disadvantages can be eliminated.However, speaker variation is only one of the majorvariation source. There are vast unpredictable channeland environmental variations that the speech recogniz-ers have to face with in practical use. Speaker adapta-tion is a technique, with which a speech recognizer canbe adapted towards a new speaker and/or environmentwith a small amount of adaptation data, or even withoutadaptation data (unsupervised adaptation). The MLLRadaptation linearly transforms a speaker-independent (SI)system towards a speaker-dependent system in the acous-tic model space based on adaptation data [8, 9]. As wewill show in this paper that the VTLN is equivalent to anonlinear transformation of the speech signal in the fea-ture space. Hence it is interesting to investigate the com-bination of the two methods in a speech recognition sys-tem. Intuitively, speaker-normalization could be helpfulfor speaker-adaptation to learn the new speaker and/orenvironment faster in a limited adaptation data, becausethe normalized speech features are less variant than theoriginal one.In this paper, we propose the speaker-speci�c Barkscale VTLN, which can be implemented in the front-endof a speech recognition system. Then we investigate thecombination of the VTLN and MLLR, and propose aniterative test procedure for decoding the combined systemof VTLN and MLLR. We also compare results for thepush-to-talk and cross-talk speech data. All experimentalresults are obtained from our JANUS-III large vocabularycontinuous speech recognition system based on the SSSTdatabase.2 VTLN IN THE BARK DOMAIN2.1 PreprocessingThe recorded speech signal is assumed to be transmit-ted via some kind of channel and to be received via somekind of receiving device. In the transmitting and receiv-ing process, the clean speech signal is disturbed by thechannel distortions and some additive noises. Generally,the channel distortion is assumed to be multiplicative inthe frequency domain, so that the received speech signalcan be expressed as equation (1):X(!) = H(!)S(!) +N(!) (1)



Where X(!), S(!), H(!), and N(!) are the spectrumof the received speech signal, the clean speech signal, thechannel response, and the additive noise signal. We as-sume that X(!) has been segmented with a Hammingwindow, so that H(!) and N(!) also include the e�ectof pre-emphasis and the Hamming window. In the Bark�lter bank front-end, X(!) is integrated with the �lterbank using band pass �lters spaced according to the Barkscale, and usually have triangular or trapezoid shape. Theintegration with the �lter bank can be formulated as:Y (n) = !=hnX!=ln Tn(!)X(!) 0 � n � N � 1 (2)Where Y (n) is n-th �lter bank coe�cient, N is thenumber of �lters, ln and hn are the lower and upper boundof the n-th �lter Tn(!). The bandwidth of each Tn(!),i.e., hn � ln, depends on the Bark scale.2.2 VTLN based on speaker-speci�c Bark scaleWe view the measured Bark scale presented in [10, 11] asthe average scale which applies to all speakers. However,for a speci�c speaker, the Bark scale should be di�erent insome extent due to the speci�c vocal tract length/shape.Our approach to do VTLN in Bark domain is not directlyto adjust the �lter bank space or to shift Bark coe�-cient as in [3, 4]. Instead, we �nd a speci�c Bark scalefor each speaker, and use this speaker-speci�c Bark scaleto compress the speaker's spectrum. The VTLN is im-plemented in the process of �lter bank integration underthe speaker-speci�c Bark scale. We refer this method asspeaker-speci�c Bark scale warping. Figure 1 is the blockdiagram of the speaker-speci�c Bark scale front-end.Warping Factor?- FourierTransform - CriticalBandIntegration -x(t) Y�(n)Figure 1: Speaker-speci�c Bark/Mel scale VTLNCompared to the Fourier spectrum warping as in [7],the VTLN is implemented in the Bark domain by thespeaker-speci�c Bark scale �lter bank integration. Figure1 can be expressed as equation (3):Y�(n) = !=h�(n)X!=l�(n) Tn(!)X(!) 0 � n � N � 1 (3)Compared to equation (2), the di�erence is that the �lterbank space, i.e., h�(n)� l�(n), depends on the speaker-speci�c warping factor �, because each speaker has a spe-ci�c Bark scale. We de�ne the speaker-speci�c Bark scaleas equation (4):B�(!) = 6ln(!=(1200��) +p(!=(1200��))2 + 1)) (4)Where � is the speaker-speci�c parameter. If we let � =1:0 for all speakers, equation (4) becomes equation (3) in[10]. Figure 2 is the warping curves of the speaker-speci�cBark scale.
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no-warpingFigure 2: Bark scale warping curvesThree curves are presented in �gure 2, which re
ectthe range of the warping factors obtained during training.The lower and upper curves correspond to the minimumand maximum factors, and the middle one corresponds tounit warping factor (no warping). The area between theupper and lower curve are the possible range of warpingfactors obtained in our training set. We observed that thewarping factors of female speakers are dominant in thearea between the lower and middle curve, which corre-sponds to more spectrum compress, and the warping fac-tors of male speakers are dominant in the area betweenthe middle and upper curve, which corresponds to lessspectrum compress. This is consistent with the fact thatfemale's VTL is generally shorter than male's, and theformant positions are higher than the male's in frequencyaxis. Thus for the normalization purpose, in general, mostof the female's spectrum should get more compress to-wards the standard one, and vice visa for male's spectrum.The result is also consistent with what we obtained in [7],though the normalization method is di�erent. The ma-jor advantage of the speaker-speci�c Bark scale VTLN isthat it is very simple and the performance is also better.Compared to the VTLN in frequency domain and one-Bark-shift method in [3], there is no warping rule need tobe speci�ed, no spectrum interpolation need to be han-dled, and no bandwidth mismatch problem. We use thesame training procedure as in [7] to train the VTLN sys-tem.3 COMPARISON OF VTLN ANDMLLRLet z�(t) be aN -dimension feature vector sequence whichis derived from Y�(n) in equation (3) (usually cepstrumof Y�(n)), and be used to train the SI system. Let o�(t)be a N-dimensional feature vector sequence from a newspeaker. The mixture Gaussian density for z�(t) at statei in the HMM can be expressed as:P (z�(t) j i) = Xk p(wk j i)N(z�(t);�ik;�ik) (5)Where p(wk j i) is the probability of the kth mixture com-ponent of state i, N(z�(t);�ik;�ik) is kth single Gaussiandensity with mean �ik and covariance matrix �ik.In the MLLR adaptation, it is assumed that o�(t) haslinear relationship with z�(t) as o�(t) = Aiz�(t) + bi in[8]. Where Ai is a N �N matrix and bi is a N � 1 vectorin state i. Therefore, the probability density of observa-tion o�(t) is obtained by replacing the single Gaussiandensity with N(o�(t));Ai�ik + bi;Ai�ikATi ) in equation(5). The adaptation algorithm is to estimate Ai and bi



to maximum P (o�(t) j i). Ai was assumed to be a di-agonal matrix to avoid the expansive computation in [8].This assumption was eliminated by just linearly transformthe mean vector in [9], i.e., replacing the single Gaussiandensity with N(o�(t);Ai�ik + bi;�ik) in equation (5).This is equivalent to assume o�(t) = z�(t) + ~bi, where~bi = (Ai � I)�ik + bi, and I is a unit matrix.We use � in z�(t) and o�(t) to illustrate that thespeech feature we are using for MLLR adaptation is thenormalized feature with VTLN. From equation (3) we cansee that the relationship between � and Y�(n) is gener-ally nonlinear. Thus the VTLN can not be completelymerged into the MLLR linear adaptation. Therefore, thecombination of VTLN and MLLR should present a fur-ther global improvement for the system. Actually, VTLNcould help MLLR in two ways. In the unsupervised adap-tation mode, the system with VTLN can give a betterhypothesis to guide the MLLR adaptation. In the super-vised adaptation mode, VTLN could reduce the variationsof the adaptation data, and make the very limited datamore e�ective for estimating the transformation matrices.4 DECODING PROCEDURE FORTHE COMBINED SYSTEMIn this section, we propose a iterative procedure for decod-ing the combined system of VTLN and MLLR. Supposethat the standard system is a SI system which was trainedwith the VTLN speech feature. We use the MLLR in theon-line unsupervised mode. Thus, for a given utterance,we �rst need to �nd the best warping factor based on thetraining criterion (ML), then decode with the warped fea-ture to obtain the hypothesis, estimate the MLLR trans-formation matrices based on the hypothesis and transformthe model parameters, and �nally decode again with thetransformed model. We can run the whole procedure it-eratively on one utterance to increase the ML score andhopefully increase the word accuracy. Following is theiterative decoding procedure:1. Set the initial warping factor � = 1:0, and load theSI system model parameters �.2. Decode the input utterance.Ŵ = argmaxW P (W j o�(t);�)3. Do Viterbi alignment to get the best state segment.s�t = arg maxst P (o�(t); st j �; Ŵ )4. Find the best warping factor based on the segment.�� = argmax� P (o�(t) j s�t ;�)5. Decode based on the best warping factor.~W = argmaxW P (W j o�� (t);�)6. Calculate the MLLR transformation matrices T .T � = arg maxT P (o��(t) j T (�); ~W )7. decode again with the transformed models.�W = argmaxW P (W j o�� (t); T �(�))8. Let Ŵ = �W , � = ��, � = T �(�), and go to step 3.The above procedure stops if there is no signi�cantincrease of the ML score between two consecutive itera-tions. The step (1) �! (5) is the decoding procedure for aVTLN system, and step (1) �! (2) �! (6) �! (7) is thedecoding procedure of a system with unsupervised MLLRadaptation (replacing ~W with Ŵ in step (6)). Comparedto the regular decoding method, which only need to run

step (2) for each utterance, the above iterative decodingis very expansive. It needs to run twice as long as the reg-ular decoding procedure in each iteration, and some extracomputation for the best warping factor and the MLLRtransformation matrices.5 EXPERIMENTSAll experiments are based on our JANUS-III speech recog-nition system. The SSST database composed of 1/3 push-to-talk dialogs and 2/3 cross-talk dialogs. We use thesame database as in [7]. Readers can �nd detail analysisof push-to-talk and cross-talk data in [12]. We use thepush-to-talk and cross-talk dialogs together to train theacoustic models, but keep an individual test set for eachof them. The push-to-talk test set consists of 86 utter-ances, the cross-talk test set consists of 117 utterances.The test vocabulary consists of 4606 words. The out ofvocabulary word rate is 2.35% for push-to-talk test set,and 0.89% for cross-talk test set. The language model isthe class-based trigram language model.We use the same Perceptual Linear Predictive (PLP)cepstral coe�cients as in [10], except the bark scale isspeaker-speci�c as equation (4). We calculate 21 �lterbank coe�cients and use them to derive 13 LPC-Drivencepstral coe�cients. Then the cepstral coe�cients andpower are combined with their �rst and second derivativeto generate a 42-dimensional feature vector. Finally, thisvector is transformed with the linear discriminant analysis(LDA) matrix, and reduced to 28 coe�cients.5.1 Results of the combined systemWe test MLLR in the unsupervised mode, and assumethat only the current input utterance is available for theestimation of the transformation matrices. We run oneiteration of the decoding procedure for the combined sys-tem. The results are obtained on the push-to-talk testset.Spk SI MLLR VTLN VtlnMllrMeba 10.4% 4.7/7.3% 10.4/8.6% 5.6/6.9%Mfmm 20.5% 16.7/20.5% 19.3/21.6% 13.4/20.1%Mofc 11.8% 8.0/11.8% 9.4/8.5% 5.2/8.5%Macc 27.1% 22.5/27.7% 26.5/26.1% 21.3/25.9%Mrnn 31.5% 18.8/30.2% 26.5/28.7% 18.2/28.5%Fcba 14.0% 12.1/16.7% 16.7/14.4% 10.7/13.9%Fnba 15.5% 10.4/14.9% 12.3/13.3% 10.4/13.3%Fmcs 25.0% 16.4/23.1% 21.6/22.1% 16.0/21.4%Fmgl 25.0% 20.4/27.4% 22.4/22.5% 13.2/22.5%AVE 21.8% 15.3/21.3% 19.1/19.4% 14.0/18.6%Table 1: WER of VTLN, MLLR and VTLN+MLLRIn Table 1, the SI column shows the word error rate(WER) of the SI system, and VtlnMllr column shows theWER of the combined system of MLLR and VTLN. Wegive two WERs for each testing speaker to represent theWER obtained with transcription/hypothesis as guide forthe warp factor and transformation matrices estimation.Therefore, We can observe the real co-e�ect of VTLN andMLLR without the e�ect of the recognition errors fromthe transcription based results. We can also observe thesensitiveness of VTLN and MLLR to the recognition er-rors from the hypothesis based results. From Table 1 wecan see: (1). the speaker-speci�c Bark scale VTLN can



reduce up to 11% word errors; (2). MLLR is very sensitiveto the recognition errors, the average WER increases from15.3% to 21.3% when using the hypothesis, instead of thetranscription, to guide the estimation of transformationmatrices. For example, for speaker Meba, the WER in-creased from 4.7% to 7.3% when using the hypothesis,though the baseline WER is very low for this speaker.(3). the on-line unsupervised MLLR is not very e�ectivein the case that the baseline system has about 20% WER.(4). VTLN is not sensitive to the recognition errors, andit can signi�cantly improve the recognition accuracy; (5)the combination of MLLR and VTLN can improve theperformance further, though the MLLR eats a small partof the gains from VTLN.5.2 Results of the iterative decodingIn this section, we present the results of the iterative de-coding procedure described in section 4. We run threeiterations of the procedure for the combined system.Baseline Iter.1 Iter.2 Iter.321.8% 18.6% 18.4% 18.4%Table 2: WER of the iterative decodingTable 2 shows that there is a slight improvement fromiteration 1 to iteration 2, and we also observed the increaseof the ML score. But after two iterations, it seems thatthere is only a minor ML score increase, and we did notobserve the improvement of WER. This means that theerror reduction of the hypothesis in each iteration is notenough to give a good guide for the estimation of warpingfactor and transformation matrices for the next iteration.5.3 Comparison of push-to-talk and cross-talkIn this section, we present some testing results on thecross-talk test set for comparison with the push-to-talkdata.Baseline MLLR VTLN VtlnMllr23.4% 16.7/24.8% 22.0/22.5% 15.8/24.2%Table 3: WER of cross-talk test setTable 3 shows that the VTLN can improve the WER,but not as e�ective as it does for the push-to-talk data,and the MLLR does not help. One of the reason is thatthe average length of the cross-talk utterances is only 9.5words per utterance (compared to 38.5 words of the push-to-talk utterances) This could be a problem, since ourVTLN and MLLR only use the current utterance to es-timate the warping factor and the transformation matri-ces. In addition, the two male speakers in cross-talk testset have very high WER (about 50%). This could af-fect the VTLN and MLLR, since the warping factor andthe transformation matrices were estimated based on thepoor hypothesis. Again, MLLR is very sensitive to therecognition errors compared to VTLN. But we also foundfrom Table 3 that the VTLN and MLLR are still e�ectivefor the cross-talk data if the transcription is used to guidethe estimation of warping factor and matrices, though theutterances are very short.
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