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ABSTRACT

Speaker normalization and speaker adaptation are two
strategies to tackle the variations from speaker, channel,
and environment. The vocal tract length normalization
(VTLN) is an effective speaker normalization approach
to compensate for the variations of vocal tract shapes.
The Maximum Likelihood Linear Regression(MLLR) is a
recent proposed method for speaker-adaptation. In this
paper, we propose a speaker-specific Bark scale VTLN
method, investigate the combination of the VTLN with
MLLR, and present an iterative procedure for decoding
the combined system of VI'LN and MLLR. The results
show that: (1) the new VTLN method is very effective
with which the word error rate can be reduced up to 11%;
(2) the combination of VILN and MLLR can provide up
to 15% word error reduction; (3) both VITLN and MLLR
are more effective for the push-to-talk data than for the
cross-talk data.

1 INTRODUCTION

Almost all speech recognizers are, in some extent, sen-
sitive to the variations of speakers and/or environment.
The performance of a current state-of-the-art speech recog-
nition system could vary largely in practical use because
of these variations. The speaker-dependent speech recog-
nition system comes from the speaker-dependent speech
signal. The reason that the speech signal is speaker-
dependent is very complex. It is not only related to the
physiological differences of speakers, but also related to
the linguistic differences [1]. But it is generally agreed
that one of the major source of inter-speaker variance is
the vocal tract shape, especially the vocal tract length
(VTL) [2, 3]. Therefore, some researchers have been de-
voted to the vocal tract length normalization (VTLN) for
speaker normalization [1, 2, 3, 4, 5, 6]. Generally speak-
ing, two issues are involved in VTLN: (1) Given the speech
data from a speaker, how to obtain the warping factor for
normalization; (2) Given a warping factor, how to do the
normalization; The warping factors could be obtained via
formant calculation as in [2, 3, 5], or via line search as
in [4, 6]. The normalization could be implemented in the
Fourier spectrum domain as in [2, 5, 6], or in the Bark
domain as in [3, 4]. We used the VTLN based on Fourier
spectrum warping in [7], and estimated the warping factor
via formant calculation or line search. We obtained up to
10% word error reduction with the line searching warping
factor, and did not get any improvement with the formant
method. The Fourier spectrum warping VTLN has some

disadvantages, such as, exists the bandwidth mismatch,
the need to specify the warping rule, the need to inter-
polate the warped spectrum, etc. Therefore, we propose
a speaker-specific Bark scale VTLN in this paper, with
which those disadvantages can be eliminated.

However, speaker variation is only one of the major
variation source. There are vast unpredictable channel
and environmental variations that the speech recogniz-
ers have to face with in practical use. Speaker adapta-
tion i1s a technique, with which a speech recognizer can
be adapted towards a new speaker and/or environment
with a small amount of adaptation data, or even without
adaptation data (unsupervised adaptation). The MLLR
adaptation linearly transforms a speaker-independent (SI)
system towards a speaker-dependent system in the acous-
tic model space based on adaptation data [8, 9]. As we
will show in this paper that the VTLN is equivalent to a
nonlinear transformation of the speech signal in the fea-
ture space. Hence it is interesting to investigate the com-
bination of the two methods in a speech recognition sys-
tem. Intuitively, speaker-normalization could be helpful
for speaker-adaptation to learn the new speaker and/or
environment faster in a limited adaptation data, because
the normalized speech features are less variant than the
original one.

In this paper, we propose the speaker-specific Bark
scale VTLN, which can be implemented in the front-end
of a speech recognition system. Then we investigate the
combination of the VILN and MLLR, and propose an
iterative test procedure for decoding the combined system
of VILN and MLLR. We also compare results for the
push-to-talk and cross-talk speech data. All experimental
results are obtained from our JANUS-III large vocabulary
continuous speech recognition system based on the SSST
database.

2 VTLN IN THE BARK DOMAIN

2.1 Preprocessing

The recorded speech signal is assumed to be transmit-
ted via some kind of channel and to be received via some
kind of receiving device. In the transmitting and receiv-
ing process, the clean speech signal is disturbed by the
channel distortions and some additive noises. Generally,
the channel distortion is assumed to be multiplicative in
the frequency domain, so that the received speech signal
can be expressed as equation (1):

X(w) = H(w)S(w)+N(w) (1)



Where X(w), S(w), H(w), and N(w) are the spectrum
of the received speech signal, the clean speech signal, the
channel response, and the additive noise signal. We as-
sume that X(w) has been segmented with a Hamming
window, so that H(w) and N(w) also include the effect
of pre-emphasis and the Hamming window. In the Bark
filter bank front-end, X (w) is integrated with the filter
bank using band pass filters spaced according to the Bark
scale, and usually have triangular or trapezoid shape. The
integration with the filter bank can be formulated as:

w=hg,

Y(n) = Y Th(w)X(w)

w=ly

0<n<N-1 (2)

Where Y(n) is n-th filter bank coefficient, N is the
number of filters, {,, and h,, are the lower and upper bound
of the n-th filter 75 (w). The bandwidth of each T;,(w),
i.e., hy — I, depends on the Bark scale.

2.2 VTLN based on speaker-specific Bark scale

We view the measured Bark scale presented in [10, 11] as
the average scale which applies to all speakers. However,
for a specific speaker, the Bark scale should be different in
some extent due to the specific vocal tract length/shape.
Our approach to do VTLN in Bark domain is not directly
to adjust the filter bank space or to shift Bark coeffi-
cient as in [3, 4]. Instead, we find a specific Bark scale
for each speaker, and use this speaker-specific Bark scale
to compress the speaker’s spectrum. The VTLN is im-
plemented in the process of filter bank integration under
the speaker-specific Bark scale. We refer this method as
speaker-specific Bark scale warping. Figure 1 is the block
diagram of the speaker-specific Bark scale front-end.
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Figure 1: Speaker-specific Bark/Mel scale VTLN

Compared to the Fourier spectrum warping as in [7],
the VTLN is implemented in the Bark domain by the
speaker-specific Bark scale filter bank integration. Figure
1 can be expressed as equation (3):

w=ha(n)
Y Tu(wX(w) 0<n<N-—1(3)

w=lg(n)

Ya(n) =

Compared to equation (2), the difference is that the filter
bank space, i.e., ha(n) — lo(n), depends on the speaker-
specific warping factor «, because each speaker has a spe-
cific Bark scale. We define the speaker-specific Bark scale
as equation (4):

Ba(w) = 6ln(w/(12007a) + \/(<,u/(12007roz))2 +1)) (4)

Where « is the speaker-specific parameter. If we let o =
1.0 for all speakers, equation (4) becomes equation (3) in
[10]. Figure 2 is the warping curves of the speaker-specific
Bark scale.
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Figure 2: Bark scale warping curves

Three curves are presented in figure 2, which reflect
the range of the warping factors obtained during training.
The lower and upper curves correspond to the minimum
and maximum factors, and the middle one corresponds to
unit warping factor (no warping). The area between the
upper and lower curve are the possible range of warping
factors obtained in our training set. We observed that the
warping factors of female speakers are dominant in the
area between the lower and middle curve, which corre-
sponds to more spectrum compress, and the warping fac-
tors of male speakers are dominant in the area between
the middle and upper curve, which corresponds to less
spectrum compress. This is consistent with the fact that
female’s VTL is generally shorter than male’s, and the
formant positions are higher than the male’s in frequency
axis. Thus for the normalization purpose, in general, most
of the female’s spectrum should get more compress to-
wards the standard one, and vice visa for male’s spectrum.
The result is also consistent with what we obtained in [7],
though the normalization method is different. The ma-
jor advantage of the speaker-specific Bark scale VTLN is
that it is very simple and the performance is also better.
Compared to the VILN in frequency domain and one-
Bark-shift method in [3], there is no warping rule need to
be specified, no spectrum interpolation need to be han-
dled, and no bandwidth mismatch problem. We use the
same training procedure as in [7] to train the VTLN sys-
tem.

3 COMPARISON OF VTLN AND
MLLR

Let Za(t) be a N-dimension feature vector sequence which
is derived from Y, (n) in equation (3) (usually cepstrum
of Yo (n)), and be used to train the SI system. Let 04(t)
be a N-dimensional feature vector sequence from a new
speaker. The mixture Gaussian density for z,(t) at state
¢ in the HMM can be expressed as:

P(za(t) [1) = > plwk [ )N (za(t);min, Six) (5)

Where p(wy | ¢) is the probability of the kth mixture com-
ponent of state 7, N(zq(t); pix, Zix) is kth single Gaussian
density with mean p;; and covariance matrix ;.

In the MLLR adaptation, it is assumed that 04(t) has
linear relationship with z4(t) as 04(t) = Aiza(t) +b; in
[8]. Where A; is a N x N matrix and b; is a N X 1 vector
in state 5. Therefore, the probability density of observa-
tion 04(t) is obtained by replacing the single Gaussian
density with N(oa(t)); Aipir + b,‘,A,‘E,‘kAlT) in equation
(5). The adaptation algorithm is to estimate A; and b;



to maximum P(ox(t) | 7). A; was assumed to be a di-
agonal matrix to avoid the expansive computation in [8].
This assumption was eliminated by just linearly transform
the mean vector in [9], i.e., replacing the single Gaussian
density with N(oa(t); Aipir + bi, Zix) in equation (5).
This is equivalent to assume o04(t) = zo(t) + b~,'7 where
b; = (A; — Dpix + b, and [ is a unit matrix.

We use a in z,(t) and o4(t) to illustrate that the
speech feature we are using for MLLR adaptation is the
normalized feature with VTLN. From equation (3) we can
see that the relationship between o and Ya(n) is gener-
ally nonlinear. Thus the VTLN can not be completely
merged into the MLLR linear adaptation. Therefore, the
combination of VILN and MLLR should present a fur-
ther global improvement for the system. Actually, VTLN
could help MLLR in two ways. In the unsupervised adap-
tation mode, the system with VTLN can give a better
hypothesis to guide the MLLR adaptation. In the super-
vised adaptation mode, VTLN could reduce the variations
of the adaptation data, and make the very limited data
more effective for estimating the transformation matrices.

4 DECODING PROCEDURE FOR
THE COMBINED SYSTEM

In this section, we propose a iterative procedure for decod-
ing the combined system of VILN and MLLR. Suppose
that the standard system is a SI system which was trained
with the VTLN speech feature. We use the MLLR in the
on-line unsupervised mode. Thus, for a given utterance,
we first need to find the best warping factor based on the
training criterion (ML), then decode with the warped fea-
ture to obtain the hypothesis, estimate the MLLR trans-
formation matrices based on the hypothesis and transform
the model parameters, and finally decode again with the
transformed model. We can run the whole procedure it-
eratively on one utterance to increase the ML score and
hopefully increase the word accuracy. Following is the
iterative decoding procedure:

1. Set the initial warping factor a = 1.0, and load the
SI system model parameters A.

2. Decode the input utterance.
W = argmaxy, P(W | oa(t),A)

3. Do Viterbi alignment to get the best state segment.
sf = arg max,, P(oa(t), s | A, W)

4. Find the best warping factor based on the segment.
a* = argmax, P(oa(t) | sf, A)

5. Decode based on the best warping factor.
W = argmaxy, P(W | 04+ (t), A)

6. Calculate the MLLR transformation matrices 7.
T* = arg max, P(0a+(t) | T(A), W)

7. decode again with the transformed models.

W = arg maxy, P(W | 0a+ (t), T*(A))
8. Let W=W,a=a* A= T*(A), and go to step 3.

The above procedure stops if there is no significant
increase of the ML score between two consecutive itera-
tions. The step (1) — (5) is the decoding procedure for a
VTLN system, and step (1) — (2) — (6) — (7) is the
decoding procedure of a system with unsupervised MLLR
adaptation (replacing W with W in step (6)). Compared
to the regular decoding method, which only need to run

step (2) for each utterance, the above iterative decoding
is very expansive. It needs to run twice as long as the reg-
ular decoding procedure in each iteration, and some extra
computation for the best warping factor and the MLLR
transformation matrices.

5 EXPERIMENTS

All experiments are based on our JANUS-IIT speech recog-
nition system. The SSST database composed of 1/3 push-
to-talk dialogs and 2/3 cross-talk dialogs. We use the
same database as in [7]. Readers can find detail analysis
of push-to-talk and cross-talk data in [12]. We use the
push-to-talk and cross-talk dialogs together to train the
acoustic models, but keep an individual test set for each
of them. The push-to-talk test set consists of 86 utter-
ances, the cross-talk test set consists of 117 utterances.
The test vocabulary consists of 4606 words. The out of
vocabulary word rate is 2.35% for push-to-talk test set,
and 0.89% for cross-talk test set. The language model is
the class-based trigram language model.

We use the same Perceptual Linear Predictive (PLP)
cepstral coefficients as in [10], except the bark scale is
speaker-specific as equation (4). We calculate 21 filter
bank coefficients and use them to derive 13 LPC-Driven
cepstral coefficients. Then the cepstral coefficients and
power are combined with their first and second derivative
to generate a 42-dimensional feature vector. Finally, this
vector is transformed with the linear discriminant analysis
(LDA) matrix, and reduced to 28 coeflicients.

5.1 Results of the combined system

We test MLLR in the unsupervised mode, and assume
that only the current input utterance is available for the
estimation of the transformation matrices. We run one
iteration of the decoding procedure for the combined sys-
tem. The results are obtained on the push-to-talk test
set.

Spk ST MLLR VTLN VelnMllr

Meba | 10.4% 47/73% | 10.4/8.6% 5.6/6.9%
Mfmm | 20.5% | 16.7/20.5% | 19.3/21.6% | 13.4/20.1%
Mofc | 11.8% | 8.0/11.8% 9.4/8.5% 5.2/8.5%
Mace | 27.1% | 22.5/27.7% | 26.5/26.1% | 21.3/25.9%
Mron | 31.5% | 18.8/30.2% | 26.5/28.7% | 18.2/28.5%
Fcba | 14.0% | 12.1/16.7% | 16.7/14.4% | 10.7/13.9%
Fnba | 15.5% | 10.4/14.9% | 12.3/13.3% | 10.4/13.3%
Fmes | 25.0% | 16.4/23.1% | 21.6/22.1% | 16.0/21.4%
Fmgl | 25.0% | 20.4/27.4% | 22.4/22.5% | 13.2/22.5%

AVE 21.8% | 15.3/21.3% | 19.1/19.4% | 14.0/18.6%

Table 1: WER of VILN, MLLR and VILN+MLLR

In Table 1, the SI column shows the word error rate
(WER) of the SI system, and VtlnMllr column shows the
WER of the combined system of MLLR and VTLN. We
give two WERs for each testing speaker to represent the
WER obtained with transcription/hypothesis as guide for
the warp factor and transformation matrices estimation.
Therefore, We can observe the real co-effect of VI'LN and
MLLR without the effect of the recognition errors from
the transcription based results. We can also observe the
sensitiveness of VI'LN and MLLR to the recognition er-
rors from the hypothesis based results. From Table 1 we
can see: (1). the speaker-specific Bark scale VTLN can



reduce up to 11% word errors; (2). MLLR is very sensitive
to the recognition errors, the average WER increases from
15.3% to 21.3% when using the hypothesis, instead of the
transcription, to guide the estimation of transformation
matrices. For example, for speaker Meba, the WER in-
creased from 4.7% to 7.3% when using the hypothesis,
though the baseline WER is very low for this speaker.
(3). the on-line unsupervised MLLR is not very effective
in the case that the baseline system has about 20% WER.
(4). VTLN is not sensitive to the recognition errors, and
it can significantly improve the recognition accuracy; (5)
the combination of MLLR and VTLN can improve the
performance further, though the MLLR eats a small part
of the gains from VTLN.

5.2 Results of the iterative decoding

In this section, we present the results of the iterative de-
coding procedure described in section 4. We run three
iterations of the procedure for the combined system.

Baseline Iter.1 Iter.2 Iter.3
21.8% 18.6% | 18.4% | 18.4%

Table 2: WER of the iterative decoding

Table 2 shows that there is a slight improvement from
iteration 1 toiteration 2, and we also observed the increase
of the ML score. But after two iterations, it seems that
there is only a minor ML score increase, and we did not
observe the improvement of WER. This means that the
error reduction of the hypothesis in each iteration is not
enough to give a good guide for the estimation of warping
factor and transformation matrices for the next iteration.

5.3 Comparison of push-to-talk and cross-talk

In this section, we present some testing results on the
cross-talk test set for comparison with the push-to-talk
data.

Baseline MLLR VTLN VtlnMllr
23.4% | 16.7/24.8% | 22.0/22.5% | 15.8/24.2%

Table 3: WER of cross-talk test set

Table 3 shows that the VTLN can improve the WER,
but not as effective as it does for the push-to-talk data,
and the MLLR does not help. One of the reason is that
the average length of the cross-talk utterances is only 9.5
words per utterance (compared to 38.5 words of the push-
to-talk utterances) This could be a problem, since our
VTLN and MLLR only use the current utterance to es-
timate the warping factor and the transformation matri-
ces. In addition, the two male speakers in cross-talk test
set have very high WER (about 50%). This could af-
fect the VTLN and MLLR, since the warping factor and
the transformation matrices were estimated based on the
poor hypothesis. Again, MLLR is very sensitive to the
recognition errors compared to VI'LN. But we also found
from Table 3 that the VTLN and MLLR are still effective
for the cross-talk data if the transcription is used to guide
the estimation of warping factor and matrices, though the
utterances are very short.

6 CONCLUSION

In this paper, we proposed a speaker-specific Bark scale
VTLN method, investigated the combination of VTLN
and MLLR, and present an iterative procedure for decod-
ing the combined system of VILN and MLLR. The new
VTLN reduced up to 11% word errors, and the combi-
nation of VILN and MLLR can reduce word errors up
to 15%. We also found that MLLR is very sensitive to
the recognition errors in the case of unsupervised adap-
tation, and VTLN is not. Both are more effective for the
push-to-talk data than the cross-talk data.
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