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ABSTRACT

We propose a novel hierarchical mixture model and present its

application to acoustic modeling for HMM based large vocabu-

lary conversational speech recognition. We detail an EM algo-

rithm for estimating the parameters of such a mixture tree for

the case of Gaussian component densities. We sketch how clus-

tering algorithms can be applied to automatically construct

suitable mixture trees for a large number of HMM states. Fur-

thermore, we discuss the advantages of a tree structured or-

ganization of mixture densities in terms of e�ciency of eval-

uation and scalability of context modeling. These properties

allow (1) to arbitrarily downsize trained mixture trees thereby

trading o� recognition accuracy against decoding speed and

model size and (2) to adapt the structure of trained mixture

trees in cross domain applications to re
ect the di�ering re-

quirements in speci�city of context. We present preliminary

results of using mixture trees for recognition experiments on

the Switchboard LVCSR corpus.

1. INTRODUCTION

The predominant approach to statistical speech recogni-

tion is based on continuous density hidden Markov mod-

els (CDHMM), typically using Gaussian mixture densities to

model HMM state observation likelihoods. In large vocabulary

continuous speech recognition, explicit and robust modeling of

phonetic context has proven to be a necessity for achieving

state-of-the-art performance, particularly when dealing with

spontaneous speech. Typically, phonetic decision trees are ap-

plied to cluster context-dependent subphonetic models into so

called tied states. Tying is necessary for obtaining robust and

well trained models since many of the theoretically possible

context-dependent units (e.g. triphones) never occur in actual

data.

However, context-dependent modeling comes at the burden

of domain dependence. Large domains such as Switchboard

and Broadcast News require detailed and highly speci�c con-

text modeling for optimal performance. In contrast, smaller

domains such as digit recognition tasks show much smaller

speci�city of phonetic context and require only a moderate

amount of context modeling. Furthermore, while the a-priori

distribution of context-independent phones appears to be rela-

tively constant over many domains, context-dependent phone

models exhibit vast di�erences in a-priori distribution for var-

ious domains [2].

A solution to the above problem requires scalable speci�city

of context modeling which can be achieved by hierarchically

structured acoustic models. We have demonstrated the bene-

�ts of such an approach in previous work [2, 3, 4] where we have

applied conditional factoring of posterior state probabilities to

devise a hierarchical architecture of connectionist estimators

for scalable context-dependent acoustic modeling.

In this paper, we present mixture trees, a novel but related

hierarchical model that, while estimating state likelihoods in-

stead of state posteriors, o�ers comparable scalability and

structural advantages as the model presented in [4]. Mixture

trees can be regarded as collections of mixture densities with

tree-structured tying of component densities. Tree nodes rep-

resent (shared) component densities and paths from root to

the leaves correspond to individual mixture densities. As we

will see, mixture trees allow to represent coarse to �ne grain

context models within a single tree structure. This multi-level

modeling and representation of phonetic context through a

tree structure yields the following advantages:

� Acoustic models based on mixture trees can be ported

e�ectively to previously unseen domains by adapting and

pruning the tree structure to re
ect the di�ering require-

ments in speci�city of context.

� Mixture trees already represent the structure required to

deal with limited amounts of adaptation data as is typi-

cally the case in speaker adaptation. There is no need for

additional structures such as regression trees often used

with conventional models since parameter sharing is in-

herently realized.

� Without having to re-estimate a single parameter, trained

mixture trees can be downsized arbitrarily to model a

smaller number of HMM states, thereby reducing model

size and decoding speed, possibly at the cost of increased

word error rate.

Although there are strategies for downsizing conventional

acoustic models (e.g. [6]) by exploiting the structure of pho-

netic decision trees, such approaches lack true scalability as

they require to compute a set of new mixture densities from

the original ones for each downsized tree. The idea of hier-

archically structuring probability densities has already been

expressed in [5] and [8]. However, that work focused on speed-

ing up the evaluation of acoustic models and used an addi-

tional tree structure only for quickly selecting a subset of the

original, unstructured densities to be evaluated. In contrast,

the present approach consists of a recursively de�ned, tree-

structured mixture model that successively re�nes estimates

of state likelihoods from the root to the leaves of the tree,

which correspond to HMM states.

2. HIERARCHICALLY TIED MIXTURE
DENSITIES

We consider the task of estimating HMM state observation

likelihoods for a set of N decision tree clustered states si us-

ing mixture densities. In a conventional CDHMM setting, we

model each state independently according to

pi(x) = p(xjsi) =

KiX

k=1

c
(k)

i q
(k)

i (x) 8i 2 f1; : : : ;Ng

where the c
(k)

i
are (a�ne) mixture weights satisfyingPKi

k=1
c
(k)

i = 1 and c
(k)

i � 0, and the q
(k)

i (x) are mixture

component densities in the space of feature vectors x. Mixture

densities are usually prefered over simple densities because of

their universal approximation property.
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2.1. Mixture Trees

Mixture trees are motivated by the observation that individual

mixture densities of context-dependent speech models overlap

considerably in feature space. Instead of using separate sets

of component densities for each mixture density, we can share

some of the component densities to allow for joint modeling of

the overlapping parts of the distributions. For instance, con-

sider the set of 4 mixture densities depicted in the upper plot

of Fig. 1. Each one of the densities consists of 3 vertically

organized component densities. Instead of assigning 3 com-

ponent densities exclusively to each mixture, we share some

of them between adjacent mixtures such that one component

is used exclusively, one is shared between two and another

one is shared between all four densities. We call the resulting

tree structured con�guration (Fig. 1) of component densities

a mixture tree. The equivalent to mixture weights in standard

mixtures are interpolation weights between tree nodes.
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Figure 1. Hierarchically Tied Mixture Densities (d =

2; b = 2)

Introducing depth d and branching factor b of a mixture tree,

we rewrite the state observation likelihoods, now being esti-

mated by the leaves of the mixture tree, as pi(x) = p
(d)

i (x)
and recursively de�ne the mixture model as

p
(0)

0
(x) = q

(0)

0
(x)

p
(k)

i (x) = �
(k)

i q
(k)

i (x) + (1� �
(k)

i ) p
(k�1)

bi=bc
(x)

where the q
(k)

i are (tied) component densities and the �
(k)

i

are local mixture weights, satisfying 0 � �
(k)

i � 1. An in-

dividual mixture density represented in the tree is evaluated

top-down, starting at the root node. Proceeding down the

tree towards the corresponding leaf node, we incrementally re-

�ne the current estimate by computing a�ne interpolations

between the already accumulated partial mixture probability

and the current local component density using weights �
(k)

i .

An interesting aspect of this model is that any node in the

mixture tree (not just the leaf nodes) computes a valid proba-

bility density which depends only on predecessor nodes. This

property allows to downsize the mixture tree without having

to re-estimate any of the parameters. In fact, the partial mix-

ture probability computed down to a speci�c node represents

the probability of the feature vector being generated by any

of the leaf nodes (states) in the corresponding subtree. This

implies that the root component density q
(0)

0
(x) models the

unconditional density p(x) of the data.

2.2. Parameter Estimation (Forward Backward)

In a maximum likelihood framework, the parameters of a mix-

ture model can be estimated iteratively using an Expectation -

Maximization (EM) algorithm [1, 7]. If the forward-backward

(Baum-Welch) algorithm is used for training the HMMs, we

face two nested probabilistic models; (1) assigning HMM states

to observations and (2) assigning mixture component densities

within state mixtures to observations.

We give an EM algorithm for mixture trees consisting of Gaus-

sian component densities. The resulting algorithm can easily

be generalized to other types of component densities. First we

have to compute posteriors h
(k)

i
(x) for all nodes in the mixture

tree in a top-down fashion given the current set of parameters.

This constitutes the E-step of our EM algorithm:

h
(0)

0
(x) = 1

h
(k)

i (x) =
�
(k)

i
q
(k)

i
(x)

p
(k)

i (x)

Here, h
(k)

i
(x) measures the posterior probability of component

q
(k)

i contributing to the mixture down to the current depth,

given the current feature vector. Again, it is important to note

that the node posteriors in our model depend only on parent

nodes, not on any of the child nodes in the tree.

In the M-step, we update the mixture weights �
(k)

i
and the

parameters of the component densities q
(k)

i based on the ex-

pectations for all training patterns gained in the E-step such

that the likelihood of the model given the data increases. We

obtain the following updates for the node parameters:
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where �
(k)

i
is the mean vector and �

(k)

i
is the covariance ma-

trix of the Gaussian density q
(k)

i . The weights 

(k)

i (x) (called
node occupation probabilities) are computed in a bottom-up

fashion from the state occupation probabilities 
i(x) (obtained
in the forward-backward algorithm) according to



(d)

i (x) = 
i(x)



(k)

i (x) =

b(i+1)�1X

j=bi



(k+1)

j (x)

That is, a node occupation probability is computed as the sum

of all state occupation probabilities of all states (leaves) in the

corresponding subtree.



2.3. Parameter Estimation (Viterbi)

In the case of Viterbi training, a state alignment implies a

one-to-one mapping between HMM states and feature vectors.

Thus, for any input feature vector, there is exactly one state

with state occupation probability 
i(x) = 1, all other state

occupation probabilities vanish. In a mixture tree, the Viterbi

assumption leads to a single path of non-zero node occupation

probabilities 

(k)

i
(x) = 1 from root to one of the leaves for

each feature vector. Therefore, node posteriors in the E-step

have to be evaluated only along the path through the mixture

tree that corresponds to the current pair of feature vector and

HMM state.

2.4. Initialization

As with standard mixture densities, reasonable initialization

of parameters is crucial for rapid convergence of the EM al-

gorithm. In the case of hierarchically tied mixture densities

with Gaussian component densities, we initialize local mixture

weights according to

�
(k)

i
=

1

k + 1

which corresponds to a uniform component prior distribution

for all mixtures in the mixture tree. Individual Gaussian com-

ponent densities are initialized using the ML estimates for the

forward-backward weighted data observed at the correspond-

ing tree node:

�
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(k)

i
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In case of Viterbi training, this simpli�es to the ML estimates

for all data of all states (leaf nodes) found in the subtree of

the node to be initialized.

2.5. Constructing Mixture Trees

Up to now, we have assumed the availability of a suitable tree

structure. The set of context clustering decision trees consti-

tutes such a structure and it is in principle possible to adopt

this structure for hierarchical acoustic modeling. However, for

the experiments reported in this paper, we have chosen to use

decision trees only for clustering phonetic contexts into a set of

tied states and to construct a separate tree structure suitable

for mixture tree modeling of these states. This way,

� acoustic similarities between allophones of di�erent mo-

nophones can be taken into account,

� the mixture tree can be forced to be balanced such that

each mixture in the tree consists of approximately the

same number of component densities.

We have experimented with both agglomerative and divisive

clustering algorithms based on measures of acoustic similarity

between HMM states to automatically construct a tree struc-

ture for the large number of (tied) HMM states typically used

in LVCSR systems. For computing appropriate measures of

similarity, we �rst estimate simple Gaussian densities for each

state to be modeled by the mixture tree. Various measures of

similarity can be de�ned for states modeled by Gaussian den-

sities, for instance information divergence or likelihood gain.

In [4], we presented an agglomerative clustering algorithm for

constructing a tree structure based on information divergence.

Although this algorithm was developed in the context of con-

nectionist hierarchical acoustic modeling it can just as well

be applied to construct mixture trees. Alternatively, a locally

greedy divisive clustering algorithm can be devised which is

computationally more e�cient and allows to construct trees

of arbitrary branching factor b. We used split likelihood gain

for divisive clustering. Starting with the root node, we succes-

sively split nodes by partitioning the contained set of Gaus-

sians such that the gain in likelihood is maximized, until we

reach leaf nodes, containing just a single Gaussian. Since the

investigation of all bn� b(b� 1)n legal partitionings of a set of

n Gaussians at a node with branching factor b is intractable,

we apply a greedy optimization algorithm that, starting from

some random initial con�guration, iteratively tries to improve

the split likelihood gain by relocating individual Gaussians

from one branch into another.

3. PRUNING MIXTURE TREES

As already mentioned, each node in a mixture tree estimates

the likelihood of the corresponding subtree, with the leaves

representing (tied) HMM states. In order to compute the like-

lihood of a speci�c state, we have to follow the path from the

root node to the leaf corresponding to that state, re�ning es-

timates of the likelihood at each node. Instead of traversing

the tree all the way down to the leaves, we can stop comput-

ing re�ned likelihoods at any tree level and treat all states

in the remaining subtree as a new tied state. This way, the

speci�city of context-dependent modeling and the number of

distinctly modeled HMM states of a trained mixture tree can

be reduced arbitrarily, from full context-dependent modeling

down to context-independent modeling and further. Introduc-

ing pruning depth dp, we can remove all tree nodes at depths

d > dp and consider all nodes at depth d = dp to be the new

set of distinct HMM states, thereby reducing both the size of

the mixture tree and the amount of computations required to

evaluate the state likelihoods. Thus, pruning of mixture trees

allows to easily adapt recognizers to available memory and/or

processor speed without having to re-train or re-cluster the

system.

4. EXPERIMENTS

For our preliminary experiments, we chose the Switchboard

large vocabulary conversational speech corpus. We used an

acoustic frontend that computes 42 dimensional feature vec-

tors consisting of 13 mel-frequency cepstral coe�cients plus

log power and their �rst and second derivatives. To compen-

sate speaker and channel di�erences, we also applied speaker-

dependent frequency warping (VTLN) and cepstral mean and

variance normalization. Quinphone HMMs with a total of 8000

tied states were constructed from Switchboard and Callhome

data by building about 150 phonetic decision trees, one for

each state of context-independent 3 state HMM models. Top-

down decision tree clustering was based on split likelihood gain

using diagonal Gaussians to model state distributions.

We then used divisive clustering to construct a binary mixture

tree for the 8000 states. Non-uniform priors were penalized

during tree construction in order to obtain a balanced tree.

The �nal mixture tree had a maximum depth of 18. Simple

diagonal Gaussians were chosen as component densities in each

node. After initialization according to section 2.4, we trained

the mixture tree for 4 iterations using Viterbi state alignments

of 170 hours of Switchboard data from a conventional recog-

nizer. To improve modeling accuracy, we then replaced the

Gaussian component densities in each tree node by mixtures

of 8 Gaussians that were obtained from the original Gaussian

by translating means randomly according to variances (mixing-

up). The resulting mixture tree, containing a total of 127992

Gaussians in 15999 nodes, was trained for another 6 iterations,

until training data likelihood converged.

Fig. 2 depicts mean and standard deviation of interpolation

weights � in each level of the trained mixture tree. For in-

creasing tree depth, interpolation weights get smaller consis-

tent with the initialization strategy and eventually level o� at

a mean of around 0:3. Their variance increases slightly to-

wards the bottom of the tree which might indicate saturation

of the speci�city of context-modeling in some branches of the

tree.

Next, we evaluated the performance of the trained mixture

tree in recognition experiments. All recognition runs used a
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15k vocabulary and a standard trigram language model trained

from the 3.5 million words in the Switchboard corpus. The re-

sults reported here were obtained on a test set consisting of

the �rst 30 secs from 12 representative speakers taken from the

1997 development test set and contained a total of 1340 words.

Using the full mixture tree with mixtures of 8 Gaussians as

component densities in each node, we achieved an unadapted

word error rate of 36.6% on this test set. For comparison, we

trained and tested a conventional model based on mixtures

of Gaussians on the same data. In order to compare mod-

els with approximately equal number of parameters, we used

mixtures of 16 Gaussians for each of the 8000 states. Using

the conventional model with the same recognition setup, we

achieved a comparable, slightly better unadapted word error

rate of 36.1% on the above test set.

Finally, we investigated the e�ects of pruning the mixture tree.

The original tree of depth 18 that models 8000 tied states was

successively pruned with dp ranging from 17 down to 8, where

dp=8 resulted in a tree with only 179 distinctly modeled states,

corresponding roughly to the number of states in a context-in-

dependent system. We decoded the above test set for each

pruned mixture tree, using the exact same decoder parame-

ters as with the unpruned mixture tree. Table 1 summarizes

the results obtained with the original and the pruned trees re-

garding size, overall decoding speed and word error rate on the

above test set.

pruning # tied # nodes tree size speed WER

depth states in tree [%] [xRT] [%]

{ 8000 15999 100.0 48 36.6

17 7991 15983 99.8 48 36.6

16 7897 15795 98.7 48 36.6

15 7290 14581 91.1 45 36.7

14 5722 11445 71.5 39 37.2

13 3699 7399 46.2 31 39.4

12 2109 4219 26.3 24 40.6

11 1143 2287 14.2 19 43.8

10 619 1239 7.7 17 52.0

9 331 663 4.1 16 55.4

8 179 359 2.2 16 62.5

Table 1. Summary of Results with Mixture Trees

While the speed-up in evaluating likelihoods (not shown in

Table 1) that can be achieved by pruning the mixture tree

corresponds roughly to the reduction in tree size, the speed-up

for overall recognition time depends on the proportion of time

spent in actual decoding which can signi�cantly exceed the

proportion of time spent in evaluation of acoustic likelihoods.

The highest speed-ups can be expected for close to realtime

systems. In our case, decoding with the smallest tree was

about three times faster than decoding with the full tree.

Fig. 3 depicts a plot of word error rate vs. mixture tree size
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Figure 3. Word Error Rate vs. Tree Size

for the results summarized in Table 1. As expected, the per-

formance for the smallest tree, modeling 179 distinct HMM

states is comparable to what is typically reported for context-

independent Switchboard systems. On the other hand, the

mixture tree can be pruned to about 25% of its orginal size at

the cost of only moderate increases in word error rate of about

4% absolute.

5. CONCLUSIONS

We have presented mixture trees, a hierarchically structured

architecture for the estimation of HMM state observation like-

lihoods. The paper details model evaluation, parameter es-

timation and tree construction for Gaussian based mixture

trees. Based on a multi-level tree-structured tying of compo-

nent densities, our approach allows to represent coarse to �ne

grain context models within a single acoustic model. Exploit-

ing this property, mixture trees can be downsized arbitrarily,

trading-o� model size and decoding speed against recognition

accuracy. Preliminary experiments with the proposed architec-

ture on Switchboard demonstrate the viability of the proposed

model and pruning method.
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