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ABSTRACT 

Lip reading provides useful information in speech percep­
tion and language understanding, especially when the audi­
tory speech is degraded. However, many current automatic 
lip reading systems impose some restrictions on users. In 
this paper, we present our research efforts, in the Interactive 
System Laboratory, towards unrestricted lip reading. \Ve 
first introduce a top-down approach to automatically track 
and extra.ct lip regions. This technique makes it possible 
to acquire visual information in real-time without limiting 
user's freedom of movement. \Ve then discuss normaliza,­
tion algorithms to preprocess images for different lightning 
c:onditions (global illumination and side illumination). \Ve 
also compare different visual preprocessing methods such 
as raw image, Linear Discriminant Analysis (LDA), and 
Principle Component Analysis (PCA). \Ve demonstrate the 
feasibility of the proposed methods by development of a 
modular svstem for flexible human-computer interaction via 
both visu:1 and acoustic speech. The system is based on 
an extension of an existing state-of-the-art speech recogni­
tion system, a modular I\foltiple State-Time Delayed Neural 
Network (:'vfS-TDNK) system. We have developed adap­
tive combination methods at several different levels of the 
recognition network. The system can automatically track 
a speaker and extra.ct his/her lip region in real-time. The 
svstem has been evaluated under different noisy conditions 
s~ch as white noise. music, and mechanic:al noise. The ex­
perimental results i;1dicate tha.t the system can achieve up 
to 55% error reduction using additional visual information. 

1. INTRODUCTION 

The visual information is complementary to the acoustic in­
formation complementary in human speech perception, es­
pecially in noisy environments. Humans can determine a 
confused phoneme using both acoustic and visual informa­
tion because manv of the phonemes, which are close to each 
other acoustically, might be very different from ea.ch other 
visually. The connection between visual and acoustic infor­
mation in speech perception was shown by McGurk with the 
so-called McG-urk Effect [1]. Visual information from the fa­
cial region, such a.s gestures, expressions, head-position, eye­
brows, eyes, ears, mouth, teeth, tongue, cheeks, jaw, neck, 
and hair, could improve the performance of machine recog­
nition [2]. :\-1uch research has been directed to developing 
svstems that combine the acoustic and visual information 
t~ improve accuracy of speech recognition. These systems 
mainly focus on integrating acoustic and visual information 
from the ora.1-cavity region of a speaker with acoustic in-

formation. Two basic approaches have been used in these 
systems to combine acoustic and visual information. The 
first approach uses a comparator to merge the results ob­
tained independently from acoustic and visual sources. The 
second approach performs recognition using a vector that 
contains both acoustic and visual information. Most sys­
tems reported better performances using both acoustic and 
visual information than using only one source of information 
[3, 4, 5, 6, 7, 8, 9, 10]. 

Most current systems, however, impose certain con­
straints on users, such as using a head-mounted camera or 
pacing reflective markers on a user's lips. It is our goal to 
remove these constraints. In this paper, we present our re­
search efforts towards unrestricted lip reading. Two major 
reasons cause low quality of visual data in lip-reading: user 
movement and environment change. \Ve present a top-down 
approach to automatically track and extract lip regions. \Ve 
use a real-time face tracker to locate a user while the user 
moves freely. The lip-finder module locates the lips within 
the found face and provides the coordinates of the mouth 
corners to lip/speech-recognition subsystem, which extracts 
the relevant information from the image. This technique 
makes it possible to acquire visual information in real-time 
without limiting user's freedom of movement. \,Ve then 
discuss normalization algorithms to preprocess images for 
different lightning conditions (global illumination and side 
illumination) by comparing different visual preprocessing 
methods such as raw image, LDA, and PCA. \Ve show that 
an adaptive method can automatically adjust parameters to 
different noise conditions. We demonstrate the feasibility 
of the proposed methods by development of a modular sys­
tem for flexible human-computer interaction via both visual 
and acoustic speech. The system is based on an extension 
of an existing state-of-the-art speech recognition system, 
a modular :'11[S-TDNI\ system. \"le have developed adap­
tive combination methods at several different levels of the 
recognition network. The system can automatically track a 
user and extract his/her lip region in real-time. The system 
has been evaluated under different noisy conditions such as 
white noise, music, and mechanical noise. The experimen­
tal results indicate that the svstem can achieve up to 55% 
error reduction usinr; additio~al visual information. 

2. SYSTEM DESCRIPTION 

Figure 1 gives an overview on the subsystems and their com­
munication of our Lip-reading system. \Ve use a Canon 
VC-Cl Camera with integrated pan-tilt unit. This unit is 
controlled by the Face-Tracker module. The Face-Tracker 



VISUAL 
FINE TUNING 

VISUAL 
PARAMETERS 

JOINT 
RECOGNrTION 

ACOUSTIC 
PARAMETERS 

Figure 1. N LI PS - system overview 

module sends the position of the face to the Lip-Finder mod­
ule, which records the acoustic and visual data parallel and 
stores the position of the mouth-corners for every frame. 
Tracking of the face and the lip corners is done in real­
time during the recording of the data. After that some 
visual fine-tuning is done to eliminate different illumination 
conditions from the images. The data is then feeded in a 
MS-TDNN recognizer [11, 12]. All those submodules are 
described in more detail in the following sections. 

For performance measure we use speaker-dependent con­
tinuous spelling of German letter strings (26 letter alphabet) 
as our task. Words in our database are 8 letters long on av­
erage. The acoustic signal is sampled at 16 kHz. The visual 
data is grabbed at 20-30 frames/sec with 24-bit RGB reso­
lution. The color images are used for the Face-Tracker and 
Lip-Finder Modules, for the lip-reading Module gray-level 
images are used. 

3. VISUAL FEATURE EXTRACTION 

In our speech reading system we use a top-down approach to 
automatically track and extract lip regions. This technique 
makes it possible to acquire visual information in real-time 
without limiting user's freedom of movement. 

To find and track the face, a statistical skin color-model 
consisting of a two-dimensional Gaussian distribution of 
normalized skin colors used. The input image is searched 
for pixels with skin colors and the largest connected region 
of skin-colored pixels in the camera-image is considered as 
the region of the face. The color-distribution is initialized so 
as to find a variety of skin-colors and is gradually adapted 
to the actual found face [13]. 

To find the lips a feature based gaze-tracking module is 
used, which is able to find and track lip-corners in real time. 
Moreover, the module is able to detect lip localization fail­
ures and to automatically recover from failures. Instead of 
tracking only the lip corners, we also track other facial fea­
tures such as pupils and nostrils along with them. Tracking 
all these facial features and using a simple 3D head model, 
e.g. we know the relative positions of each of the used facial 
features, outliers in the set of found feature points can be 
detected and their true positions can be predicted [14]. 

4. VISUAL PREPROCESSING 

In real world applications the conditions like light or size and 
position of the speaker can change. It was shown [15] that 
the recognition results decrease drastically if those condi­
tions change within a small range. Therefor the visual data 
must be preprocessed to eliminate these real-world problems 
[16, 17]. 

From the Lip Finder module we get the coordinates of the 
mouth corners. Using these corners we can cut the lips out 

of the face image and rescaled to a constant size. Because 
the Lip Tracking is good enough, no further preprocessing 
is needed to get constant size and position of the lips in 
the lip-sequence. In our earlier system we have used frame­
correlation with a so-called master-lip to get constant size 
and position of the lip-images. 

For illumination invariance we use an adaptive grayvalue 
modification. The Normalization of grayvalues is done by 
using a distribution function of grayvalues, figure 2 shows 
two possible optimal distributions. Given some images un­
der different lightning conditions, we have to adjust the 
gray-values in a way, which the distribution matches with 
an optimal distribution function. Figure 3 gives an example 
of images in our database, figure 4 shows the distributions 
before and after the gray-value modification. 

In a first approach we used for the adjustment a method 
(gray-value modification) that is described in [18] in detail: 
The gray-value distribution is computed, using the accumu­
lated gray-values, it is easy to adjust the gray-values in a 
way, that the accumulated function is the same as from the 
target function: 

J'(p) = T(f(p)) 

where f(p) is the original gray-value, T the modification 
function and f' (p) the new gray-value. 

In this method only global histogram of the images is 
adapted. The method gives not the desired result if side­
illumination occurs in the image. We solved this problem by 
developing an adaptive gray-value modification: The image 
is divided in 4 parts Qk (figure 5). Now we can compute 
the gray-value modification T1, T2, T3 and T4 for each part 
separate. The adaptive gray-value modification is a linear 
combination of these gray-value modifications: 

4 

T(f(p)) = ~ w;Ti(f(p)) 
i+l 

To compute the w; each of the 4 parts is separated again 
in 4 parts (% ). There are 3 kinds of neighborhood (Region 
A, B and C in figure 5): q;j has no, one or three Qk neigh­
bors. On the example of the points A, P2 and P3 in figure 
5 we show how to compute the transformation: 

T(A) ~ (-X_r_T1(A) + _X_l_T2(A)) 
Yo + Yu Xt + Xr Xt + Xr 

+ _Y_o_ (-X_r_T3(A) + _X_l_T4(A)) 
Yo + Yu Xi + Xr Xi + Xr 

~T1(A) + _Y_o -T3(A) 
Yo+ Yu Yo+ Yu 
T3(P3) 

5. VISUAL DATA REPRESENTATION 

The dimensionality of the normalized pixel vector is quite 
high (24x18pixel = 384), especially when compared with the 
acoustic input vector. Unlike for acoustic speech data, there 
are no generally agreed-upon parameterization strategies for 
the visual lip image. Since we are using a connectionist al­
gorithm for recognition we have followed the philosophy of 
avoiding explicit feature extraction and segmentation of the 
image. Instead, we rely on the network to develop appro­
priate internal representations of higher level features. We 
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6.3. Performance 
We have tested the recognizer on datasets 200 letters se­
quences (continuous spelling) from one single speaker. As 
performance measure we used the Word Accuracy (where 
each letter is seen as a word) : 

WA= 100%(l - #SubError + #lnsError + #DelError 
#Letter 

Visual Data Representation Figure 10 shows the com­
bined word accuracy on test-set 1 with different preprocess­
ing methods. We show the scores for clean acoustic data 
and for two cases where increasing amounts of white noise 
were artificially added to degrade the acoustic-only recogni­
tion rates. In general, best performance was achieved with 
gray level and LDA input. The results indicate that of the 
tested visual input representations, the gray-level and LDA 
gave very similar performance under most conditions. Thus 
with a proper choice of transformation we can significantly 
(factor 12) reduce the dimensionality of the input without 
sacrifing performance. Note that the reduction is done with­
out any heuristic feature extraction. One disadvantage of 
PCA and LDA preprocessing is, that they are more sensible 
against online conditions (size, illumination) than the raw 
gray-level image. 
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Figure 10. visual audio combined recognition rates for different 
data representations 

Combination Alternatives We have trained the recog­
nizer on 170 sequences of acoustic/visual data from one 
speaker and tested on 30 sequences of the same person. For 
each combination method below we have trained the nets 
on clean acoustic data. We separately trained an acoustic 
TDNN on the same sequences of clean and corrupted data 
with white noise at 16 dB SNR. For testing we also added 
different types of artificial noise to the test-set of clean data: 
white noise (16 and 8 dB), music (20 and 8 dB), and me­
chanical noise (25 and 10 dB). 

Figure 11 shows the results for the three combination 
methods on the phonetic layer and on the input and hid­
den layer in comparison to the acoustic recognition rate in 
different noise environments. All the nets were trained on 
clean acoustic data. The recognition rate on the visual data 
(without acoustic information) was 55%. The architectures 
in Fig. 9 (b) and (d) were not trained with the clean dataset 
because the additional information (SNR) does not appear 
in this training set (e.g. the SNR is approximately constant 
for all the words in this database). So recognition improve­
ments from this kind of architecture could not be expected 
in this case of training data. 

With all combination methods we get an improvement 
compared to the single acoustic recognition, especially in 
the case of high background noise. We obtain the best re­
sults using the combination on the phonetic layer. Using 
the entropy weights yields good recognition results but has 
a great disadvantage: a bias b which is necessary to pre-skew 
the weights is needed and has to be optimized by hand. In 
contrast, the SNR weights were determined automatically. 
They result in roughly the same performance without hav­
ing to 'hand-optimize' any parameters during the recogni­
tion progress. We have also tested a combination of this two 
methods, i.e. computing the bias b of the entropy weight 
from the SNR instead of setting it by hand. The results 
were approximately the same as with hand-optimized en­
tropy weights. 

Both combination methods have the disadvantage that 
they do not take into consideration the inherent confusabil­
ity of some phonemes and visemes, but use a single weight 
in each acoustic/visual time frame depending only on the 
quality of the acoustic data. The approach that uses a neu­
ral network for combination relies on the fact that some 
phonemes are easier to recognize acoustically while some 
can be more reliably distinguished from the visual input, 
by using different weights for each phoneme/viseme pair. 
As expected, this method delivers the best results except in 
the case of high background noise (i.e. motor 10 dB and 
white noise 8 dB) . 

Similarly, the hidden- and input-combination recognition 
performance suffers more in these cases. However, when 
evaluating the different approaches one has to remember 
that the neural net combination, just as the hidden- and 
input-combination, has no explicit information about the 
quality of the acoustic input data which can be used during 
the recognition progress as it is done by the combination at 
the phonetic level with the entropy- and the SNR-weights. 

■ acoustic D Entropy D 00 D NN 

D hidden ■ input 

100 
90 

t 80 
-~ 70 
>-

60 u 
~ 
~ 50 
u 
u 40 
~ 
"E 30 

~ 20 
10 
0 

clean motor music music while motor white 

33 dB 25 dB 20 dB 16 dB noise 10 dB noise 
16dB 8dB 

Figure 11. Combination on input, hidden, and phone layer; 
trained with clean data . 

Motivated by this we have trained the net on a set of 
clean and noisy data, i.e. the 170 sequences used before 
and with the same sequences with 16 dB white noise. Here 
we also trained the architectures from Fig. 9 (b) and (d), 
i.e. hidden and input combination with additional input of 
the SNR. In some cases we get small improvements with 
that kind of combination. 

On the slightly noisy data we get improvements in com­
parison to the results achieved with the clean training data 



set. The improvements in the case of white noise are pre­
dictable since the training data contains utterances contam­
inated with 16 dB SNR white noise. The improvements ob­
tained with the motor 10 dB S~R test set are most remark­
able. Here an error reduct.ion of a.bout 50% was found in 
the case of phonetic combination with entropy- and SNR­
wcights compared to the results obtained with the exclu­
sively clean training data set. Unfortunately the combina­
tion with a neural network did not lead to such a good error 
reduction in this case. 

'Cnder both, clean and noisy, conditions we get the best 
performance with combining on the phonetic level. The 
advantage in doing this is, that the acoustic and visual net 
are trained separately. This means that the para.meters for 
training can be optimized separately, i.e. the epochs for 
training the visual nets are three times higher than for the 
acoustic net. 

7. CONCLUSION 

\Ve have summarized our efforts towards unrestricted lip­
reading in this pa.per. Using a top-down approach, a ro­
bust real-time tracking system can extra.ct a user lip region 
while the user moves freely. The illumination changes can 
be handled effectively by the adaptation method. We have 
demonstrated the proposed methods by the continuously 
spelling task of German letters. The system can achieve up 
to 55% error reduction using additional visual information 
under noisy conditions. \~Te are currently developing a user 
independent system for language training applications. 
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