MODELING AND EFFICIENT DECODING OF LARGE VOCABULARY
CONVERSATIONAL SPEECH

Michael Finke, Jiirgen Fritsch, Detlef Koll and Alex Waibel
(finkem, fritsch+,koll,ahw)@cs.cmu. edu

Interactive Systems Inc. Pittsburgh (USA)

ABSTRACT

Capturing the large variability of conversational speech

in the framework of purely phone based speech recog-
nizers is virtually impossible. It has been shown ear-
lier that suprasegmental features such as speaking rate,
duration and syllabic, syntactic and semantic structure
are important predictors of pronunciation variation. In
order to allow for a tighter coupling of these predictors
of pronunciation, duration and acoustic modeling a new
recognition toolkit has been developed. The phonetic
transcription of speech has been generalized to an at-
tribute based representation, thus enabling the integra-
tion of suprasegmental, non-phonetic features. A pronun-
ciation model is trained to augment the attribute tran-
scription to mark possible pronunciation effects which are
then taken into account by the acoustic model induc-
tion algorithm. A finite state machine single-prefix-tree,
one-pass, time-synchronous decoder is presented that ef-
ficiently decodes highly spontaneous speech within this
new representational framework.

1. INTRODUCTION

Most speech recognition systems rely on dictionaries that
contain few alternative pronunciations for most words. In
natural speech, however, words seldom adhere to their ci-
tation forms. The failure of ASR systems to capture this
important source of variability is potentially a significant
source for recognition errors, particularly in spontaneous,
conversational speech. The availability of phonetically
transcribed corpora led to work on automatic inference
of pronunciation variation. Unfortunately, increasing the
number of variants per dictionary entry based on a pro-
nunciation model means increasing the confusability be-
tween dictionary entries, and thus often leads to an actual
performance decrease. In [3] we have introduced speak-
ing mode as means to reduce confusability by probabilis-
tically weighting alternative pronunciations depending on
the speaking style. Pronunciation modeling and acoustic
modeling were introduced as being dependent on a wider
range of observables ranging from speaking rate and du-
rations to syllabic, syntactic and semantic structure. All
of these contributing factors were subsumed in the notion
of speaking mode [7].

In this paper we present a new speech recognition toolkit
that was specifically designed to allow for this more flexi-
ble modeling of conversational speech. The notion of con-
text is broadened from its purely phonetic definition to a
context that incorporates all sorts of features and predic-
tors: dialect, gender, word or syllable position, durations,
speaking rate, fundamental frequencies, HMM state etc..

This affects all levels of modeling within the recognition
engine, from the way words are represented in the dictio-
nary, through pronunciation modeling, duration model-
ing to acoustic modeling. In the second part of the paper
we will introduce strategies to efficiently decode conversa-
tional speech within the mode dependent modeling frame-
work. A one-pass, time synchronous decoder is described
and evaluated on Switchboard, a human-to-human tele-
phone corpus.

2. MODELING CONVERSATIONAL
SPEECH

Pronunciation differences represent one important source
of variability in spontaneous, conversational speech that
is not well accounted for by current recognition systems.
The speaking mode dependent modeling framework pro-
posed earlier [7, 3] has shown significant gains in terms of
word accuracy through a more detailed modeling of the
surface form of the pronunciation.

2.1. Pitfalls of Phonetic Represention

Just as the phonetic representation of careful speech is a
schematization of articulatory and acoustic events, a pho-
netic transcription of sloppy speech must be a gross sim-
plification: pronunciation models that implement purely
phonological mappings generate phonetic transcriptions
which are underspecified in terms of durational and spec-
tral properties. Thus, reduced variants as predicted by a
pronunciation model end up being expected to be pho-
netically homophonous (e.g. the fast variant of “sup-
port” being pronounced as /s/p/o/r/t/ phonetically ho-
mophonous with “sport”). But, for such homophony to
be created, not only would the unstressed vowels have to
be deleted, but the durations of the remaining phones
would have to take exactly the same values that they
have in words not derived via fast speech vowel reduction.
Similarily, fast speech intervocalic voicing in a word like
“faces” cannot be precisely represented as /f/ey/z/ih/z/
phonetically homophonous with “phases”, unless both the
voice value of the fricative as well as the durational rela-
tionship between the stressed vowel and the fricative have
changed.

2.2. From Phones to Attribute Instances

Instead of starting from a purely phonetic representa-
tion where a word is transcribed as a sequence of phones
our recognition toolkit is based on attributes. Starting
point is a set of attributes each of which can be either
binary, discrete (i.e. multi-valued), or continuous valued.
The basic set of attributes used to build a speech recog-
nizer are articulatory features (e.g. vowel, high, nasal,



reduced), stress, word position (e.g. word begin/end, syl-
lable boundary), word class (e.g. pause, function word)
and HMM state (e.g. begin/middle/end state). A word w
is transcribed as a sequence of instances (tot1 .. . 1) which
are bundles of instantiated attributes (i.e. attribute-value
pairs). The filled pause “um” for example is transcribed
by a single instance ¢ consisting of truth values for the fol-
lowing binary attributes (pause, nasal, voiced, labial...).

2.3. Pronunciation Modeling

The instance based representation allows for a more care-
ful modeling of pronunciation effects as observed in sloppy
speech. Instead of predicting the expected phonetic sur-
face form based on a purely phonetic context we aug-
ment the canonical instance-based transcription proba-
bilistically. The pronunciation model predicts instances
for a set of attributes: reduced, deleted, nasalized, shifted,
duration, speaking rate etc.. That means that instead of
mapping from one phone sequence to another as described
in 2.1. the pronunciation model is trained to predict pro-
nunciation effects/phenomena:

P k] ko [ )

The pronunciation variants are derived by augmenting the
initial transcription by the predicted instances

ot = (® o)t @) (B )

and they are weighted by the probability

1
p(t'ot'r...t'y) =

N

k
Hp(L'N\ cole—1[te]teg1 - 2)
k=0

where Z is a normalizing constant.

Prediciting pronunciation variation by means of augment-
ing the phonetic transcription by expected pronunciation
effects as described above avoids possibly homophonous
representation of variants [3]. The original transcription
is preserved and it is left to the duration and acoustic
model building process to exploit the augmented annota-
tion.

2.4. Acoustic Modeling

Decision trees are grown to induce a set of context depen-
dent duration and acoustic models. The induction algo-
rithm allows for questions with respect to all attributes
defined in the transcription. Thus, starting from the aug-
mented transcription context dependent modeling means
that the acoustic models derived depend on the phonetic
context as well as the pronunciation effects and all speak-
ing mode related attributes. This leads to a much tighter
coupling of pronunciation modeling and acoustic modeling
because model induction takes the pronunciation predic-
tors into account as well as acoustic evidence.

3. FINITE STATE MACHINE DECODER

The primary goal when designing the LVCSR decoder was
to build a toolkit as flexible as possible to do research on
conversational speech as described above and at the same
time allow for efficient decoding runs. For the sake of co-
herence of training, testing and rescoring results the same
decoder was supposed to take care of finite state gram-
mar decoding and forced alignment of training transcripts,
large vocabulary statistical grammar decoding and lattice
rescoring. In the following we present a single-prefix-tree

time-synchronous one-pass decoder which is based on ab-
stract finite state machines to represent the underlying
grammar to be recognized.

3.1. Single-Prefix-Tree One-Pass Decoder

To achieve reasonable efficiency in a one-pass decoder the
dictionary has to be represented by a pronunciation prefix
tree [5]. The two problems due to this representation
are, first, if the tree is reentrant then only the single best
history is considered at word transitions at each time ¢ and
second, the application of the grammar score is delayed
since the identity of the word is only known at the leaves
of the tree.

Our approach of dealing with the first problem is to have a
priority heap to represent alternative linguistic theories in
each node of the prefix tree as described in [1]. The heap
maintains all contexts whose probabilities are within a
certain threshold thus avoiding following the single best
local history only. The threshold and the heap policy have
the benefit of allowing us to employ different more or less
aggressive search techniques by effectively controlling hy-
pothesis merging. In contrast to the tree copying process
as employed by other recognizers the heap approach is
more dynamic and scalable.

3.2. Finite State Language Model Interface

The language model is presented to the decoder by means
of an abstract finite state machine representation. The
exact nature of the underlying grammar remains trans-
parent to the recognizer. The only means to interact with
a respective language model is through the following set
of functions. Let FSM be a finite state machine based
language model:

FSM.initial() Returns the initial state of the FSM.

FSM.arcs(state) Returns all arcs departing from a
given state. An arc consists of the input label (recog-
nized word), the output label, the cost and the next
state. Finite state machines are allowed to be nonde-
terministic, i.e. there are possibly two arcs with the
same input label.

FSM.cost(state) Returns the exit cost for a given state
to signal whether a state is a final state or not.

This abstraction of the language model interface makes
merging of linguistic theories a straight forward and well
defined task to the decoder: two theories fall into the same
congruence class of histories and thus can be merged if the
state indices match. The finite state machine is supposed
to return which theories can be merged. The advantage
of this division of labor is that the decoder can without
any additional implementation effort decode grammars of
any order.

In order to deal with filler words, i.e. words that are
not modeled by a particular FSM grammar (these are
typically pauses such as silence and noises), the decoder
virtually adds a self loop with a given cost term to each
grammar state. As a result any number of filler words can
be accepted/recognized at each state of the finite state
machine.

The toolkit provides a set of different instantiations of the
finite state machine interfaces which are used in different
contexts of training, testing or rescoring a recognizer:

e Finite State Grammar Decoding: The most immedi-
ate application of the FSM interface idea is to de-
fine a finite state grammar explicitly. Besides its



use in command-and-control applications we employ
this feature in the course of training the recognizer.
In [2] we have shown that when dealing with unre-
liable transcripts of the training data a significant
gain in word accuracy can be achieved by train-
ing from probabilistic transcription graphs instead of
the raw transcripts. The toolkit allows for decod-
ing of right recursive rule grammars by simulating
an underlying heap to deal with recursion. The tran-
scription graphs of the Flexible Transcription Align-
ment (FTA) paradigm are expressed in the decoder
in terms of a probabilistic rule grammar. Thus,
forced alignment of the training data is basically done
through decoding these utterance grammars.

e N-gram Decoding: Statistical n-gram language mod-
els are not explicitly represented as a finite state ma-
chine. Instead a finite state machine wrapper is built
around n-gram models. The state index codes the
history such that FSM.arcs(state) can retrieve all the
language model scores required from the underlying
n-gram tables. This implies that the FSM is not min-
imized and the state space is the vocabulary to the
power of the order of the n-gram model.

e Lattice Rescoring: Lattices are finite state machines,
too. So rescoring a word graph using a different set
of acoustic models and a different language model is
feasible by means of decoding along lattices and by
on-the-fly composition of finite state machines.

3.3. Finite State Machine Lookahead

The incorporation of the grammar probabilities into the
search process should be done as early as possible so that
tighter pruning thresholds can be used for decoding [6].
Within the finite state machine abstraction the lookahead
techniques of [6] can be generalized to any kind of FSM
based language model. For each state the decoder needs
to derive - on demand - a cost tree which reports for ev-
ery node of the prefix tree what the best language model
score for all words with a given prefix is going to be. For a
trigram based FSM the lookahead tree will consequently
be a trigram lookahead, for fourgrams a fourgram looka-
head and for finite state grammars the lookahead will be
projection of all words allowed at a certain grammar state.
In order to compute finite state machine lookahead trees
efficiently on demand several techniques needed to be
combined:

e Lookahead trees once computed are saved in an aging
cache to avoid recomputing the tree for subsequent
frames.

e To reduce the size of the cache and the number of
steps to compute the tree we precompute from the
prefix tree a new data structure: the cost tree. The
cost tree represents the cost structure in a condensed
way and turns the rather expensive recursive pro-
cedure of finding the best score in the tree into an
iterative algorithm.

e Each heap element or hypothesis or tree copy has
the current FSM lookahead score attached. When
the hypothesis is expanded to the next node and the
respective lookahead tree has been removed from the
cache in the meantime the tree will not be recom-
puted. Instead we propagate the lookahead proba-
bility of the prefix (“lazy cache” evaluation).

3.4. Crossword Modeling

The acoustic models we build are polyphonic within-word
models but triphone models across word boundaries. To
incorporate crossword modeling in a single-prefix-tree de-
coder we have to deal with context dependent root and
leaf nodes. Instead of having context dependent copies
of the prefix tree each root node is represented as a set
of models, one for each possible phonetic context. The
hypotheses of these models are merged at the transition
to the within word units (fan-in). As compact means of
representing the fan-in of root nodes and the fan-out of
leaf nodes we introduced the notion of a multiplexer. A
multiplexer is a dual map that maps instances ¢ to the in-
dex of a unique hidden markov model which is supposed
to be the model to be used in the context of ¢:

mpx(e) : t—=i€{0,1,... Nmpx}

mpx[i] ib—)TnE{mo,mh---mNmpx}

where mo,m1...mn,,,, are unique models. The set of
multiplexer models can be precomputed based on the
acoustic modeling decision tree and the dictionary of the
recognizer.

For modeling converstational speech the concept of mul-
tiplexers became particularly important since the aug-
mented attribute representation of words leads inevitably
to an explosion of the number of different crossword con-
texts. Since multiplexers map to unique model indices
they basically implement a compression of the fan-in/out
and a scheme to address the context dependent model by
the context instance ¢.

mpx[i]: i ->m

roots nodes /\ leaves
mpx word
P 888
cost
i I ——
mpx index|| mpx[index]

cost

index||mpx[index]_ T T ]

MPX cost

index||mpxfindex]_ T T ]

21098

2109s

2109s

MPX
(a) (b)
word mpx[i]: i ->m
(4 f f é é f word MPX[i]: i -> mpx
mpx[0] mpx[1] state 2
2 mpx[0] mpx[L | cost| g
state || T CTT . | cost | §]|[| mex P (2] s
3
2
state || (T T 1 [T T J..|cost|g|||state ”
L 8
.| cost| 8
m mpx[0] mpx[1] cost|
state || 1T ] [T T ... |ocost|g|f|mPX ®
3

(©) (d)

Figure 1. (a) Prefix search tree consisting of
roots, nodes, leaves and single phone word nodes
[stubs]. The heap structure of a root node (b),
a leaf node (c), and a stub (d): state=finite
state machine grammar state; mpx=multiplexer;
MPX=multiplexer of multiplexers; cost=FSM
lookahead score; score=total best score of hypoth-
esis (acoustic plus expected FSM cost).

The resulting prefix tree used by the decoder consists of
the following types of nodes

e Root Node: A root node represents the first attribute
instance of words in terms of the respective mul-



tiplexer. The heap policy is to merge only those
hypotheses that have the same history or linguis-
tic theory and whose final instances ¢, and ¢, map
to the same context dependent word initial model,
i.e. mpx(to) = mpx(tp). This means that the heap
is used to keep track of different contexts, the FSM
state (representing the linguistic context) as well as
acoustic contexts.

e Internal Node: In word internal nodes only those hy-
potheses are collapsed that are found to be in the
same finite state machine state.

e Word/Leaf Node: For every word there is a leaf node.
A multiplexer describes the fan-out. Each heap el-
ement represents the complete fan-out for a given
grammar state.

e Single-Phone/Instance Node: Words consisting of
one phone only are represented by a multiplexer of
multiplexers. Depending on the left context of the
word this multiplexer returns a multiplexer repre-
senting the right-context dependent fan-out of this
word. The heap policy is the same as for root nodes,
and each heap element represents the complete fan-
out as for leaf nodes.

Figure 1 shows the different heap architectures for each
of the prefix tree’s node types.

3.5. Pruning

In addition to the acoustic and the word end beam for
pruning the acoustics we use two heap related controls:
the maximum number of heap elements can be bounded
and there is a beam to prune hypotheses within a heap
against each other. The number of finite state machine
states expanded at each time ¢ can be constrained as well
(topN threshold).

3.6. Dynamic Frame Skipping (DFS)

Acoustic model evaluation is sped up by means of gaus-
sian selection through Bucket Box Intersection [4] and by
dynamic frame skipping (DFS): The underlying idea here
is to reevaluate acoustic models only provided the acous-
tic vector changed significantly from time ¢ to time ¢ + 1.
A threshold on the euclidean distance is defined to trig-
ger reevaluation of the acoustics. To avoid skipping too
many consecutive frames we allow only for one skip at a
time, i.e. after skipping one frame the next one must be
evaluated.

4. SUMMARY

We have presented a new recognition toolkit designed
specifically for dealing with large vocabulary spontaneous
speech. Based on a generalized representation of the pho-
netic transcription we recast the mode dependent pro-
nunciation modeling approach introduced in [3]. The ar-
chitecture of a new finite state machine based one-pass
decoder, the heap organization, lookahead infrastructure
and crossword handling were described and motivated.

To assess the performance of the decoder under tight real-
time constraints we started from a Switchboard recog-
nizer trained on human-to-human telephone speech. The
acoustic frontend computes 42 dimensional feature vectors
consisting of 13 mel-frequency cepstral coefficients plus
log power and their first and second derivatives. Cep-
stral mean and variance normalization as well as vocal
tract length normalization are used to compensate for

channel and speaker variation. The recognizer consists of
8000 pentaphonic Gaussian mixture models. A 15k words
recognition vocabulary and approximately 30k dictionary
variants generated by a mode dependent pronunciation
model are used for decoding. Without MLLR adapta-
tion and decoded with a Switchboard trigram language
model trained on 3.5 million words the base performance
at 100xRT is 37% word error rate (run-on, one-pass recog-
nition on NIST Eval’96). Groups participating in recent
NIST evaluations reported decoding times in the order of
300 realtime factors [which includes multiple adaptation
passes]. Table 1 shows the first word accuracy results of
our Switchboard recognizer at around ten times realtime.

| Condition | RT | WER |
Baseline 100 37%
Tight beams, topN=10 12 | 43.8%
Tight beams, topN=10, DFS 7| 45.6%
Tight beams, topN=10, DFS, BBI 5 | 49.8%

Table 1. Tight pruning in the context of highly
confusable Switchboard speech (topN=10 means
that only 10 finite state machine states were ex-
panded per frame; DFS=Dynamic Frame Skip-
ping; BBI=Bucket Box Intersection).

REFERENCES

[1] F. Alleva, X. Huang, and M.Hwang. Improvements of
the Pronunciation Prefix Tree Search Organization. In
IEEE International Conference on Acoustics, Speech,
and Signal Processing, Atlanta, Georgia USA, May
1996.

[2] M. Finke and A. Waibel. Flexible Transcription Align-
ment. In 1997 IEEE Workshop on Speech Recogni-
tion and Understanding, Santa Barbara, California,
December 1997.

[3] M. Finke and A. Waibel. Speaking Mode Dependent
Pronunciation Modeling in Large Vocabulary Conver-
sational Speech Recognition. In Proceedings of FEu-
rospeech, volume 5, pages 2379-2382, September 1997.

[4] J. Fritsch and I. Rogina. The Bucket Box Intersection
(BBI) Algorithm for Fast Approximative Evaluation
of Diagonal Mixture Gaussians. In IEEE International
Conference on Acoustics, Speech, and Signal Process-
ing, Atlanta, Georgia USA, May 1996.

[6] H. Ney, R. Haeb-Umbach, B.H. Tran, and M. Oerder.
Improvements in Beam Search for 10000 Word Con-
tinuous Speech Recognition. In IEEE International
Conference on Acoustics, Speech, and Signal Process-
ing, March 1992.

[6] S. Ortmanns, A. Eiden, H. Ney, and N. Coenen. Look-
Ahead Techniques for Fast Beam Search. In IEEE In-
ternational Conference on Acoustics, Speech, and Sig-
nal Processing, pages 1783-1786, Munich, 1997. IEEE.

[7] M. Ostendorf, B. Byrne, M. Bacchiani, M. Finke,
A. Gunawardana, K. Ross, S. Roweis, E. Shriberg,
D. Talkin, A.Waibel, B. Wheatley, and T. Zeppen-
feld. Systematic Variations in Pronunciation via a
Language-Dependent Hidden Speaking Mode. In In-
ternational Conference on Spoken Language Process-

ing, Philadelphia, USA, 1996.



