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ABSTRACT

We demonstrate the portability of a stochastic method for under-
standing natural language from a setting of human-machine in-
teractions (ATIS - Air Travel Information Services and MASK -
Multimodal Multimedia Automated Service Kiosk) into the more
open one of human-to-human interactions. The application we use
is the English Spontaneous Speech Task (ESST) for multilingual
appointment scheduling. Spoken language systems developed for
this task translate spontaneous conversational speech among dif-
ferent languages.

1. INTRODUCTION
In this paper, a stochastic component for natural language under-
standing, initially developed as a part of a spoken language sys-
tem for the information retrieval applications ATIS (Air Travel In-
formation Services) and MASK (Multimodal Multimedia Auto-
mated Service Kiosk) [7], is ported to a multilingual, appointment
scheduling task, the English SpontaneousSpeech Task (ESST) [8].

Machine translation systems combine speech recognition, natural
language understanding and dialog to capture the meaning of a
spoken utterance. Additionally, natural language generation and
speech synthesis are used to build end-to-end systems which ac-
complish a given task, such as the scheduling of an appointment
by interlocutors speaking different languages. In this study, sta-
tistical modeling techniques replace the commonly-used manually
generated grammar rules that parse the recognizer output into a
semantic representation. The statistical models are derived from
the automatic analyses of large corpora of naturally-occurring sen-
tences along with their semantic representations. Such stochastic
methods have been applied in the BBN-HUM [10] and the AT&T-
CHRONUS [5] systems for the American ARPA-ATIS task. To
date, the language and domain portability of stochastic parsers has
not been investigated. However, portability and flexibility issues,
discussed in this paper, represent the essential motivations for ap-
plying a stochastic method for the semantic analysis.

The stochastic component has been trained using a corpus anno-
tated by the CMU-PHOENIX parser, which, as part of the JANUS

speech-to-speech translation system [11], transforms the output of
the recognizer into semantic trees. Since a translation system deals
with human-to-human dialogs, as opposed to the ATIS and MASK
tasks in which a person negotiates with a machine, not only the
domains per se, but also the behavior of the interlocutors differ
greatly, especially with regard to negotiation patterns and degree
of spontaneity.

In the next sections, we describe how both the rule-based
(PHOENIX) and the stochastic parsers work (Sections 2 and 3) and
introduce the semantic representation (Section 4). In Section 5
the stochastic model is defined, and the main characteristics of
the training corpus are provided in Section 6. Section 7 discusses

comparative evaluations between the stochastic component and
PHOENIX.

2. RULE-BASED PARSING IN PHOENIX
The PHOENIX translation modules used in JANUS [6, 12] consist
of a top-down chart parser that, given an analysis grammar for the
source language and an input sentence in that language, produces
a semantic tree, and of a simple generation module that, given a
generation grammar for the target language and a semantic tree,
produces a surface form of the semantic tree in the target language.
The parser uses heuristics to, in this order, maximize coverage and
minimize tree complexity.

PHOENIX grammars are context-free grammars in which the left-
hand sides (rule heads) correspond to semantic tokens relevant to
the application at hand, and right-hand sides (rule bodies) capture
a particular way in which the semantic token can be expressed.
Figure 1 shows some sample grammar rules for a scheduling do-
main. Note that grammar terminals (i.e., lexical items) and gram-
mar nonterminals (i.e., semantic tokens) are freely mixed in the
right-hand sides. Auxiliary nonterminals (uppercased in the exam-
ple) are used only as a short-hand for the grammar writer and do
not appear in the final parse tree.

(1) [farewell]
( *good +bye)

(2) [sugg meet]
( SUGG MEET *[time] *[loc] )
( is MEET GOOD *FOR YOU )
...

(3) SUGG
( how about )
( what *do *you *think about )
...

(4) MEET
( *if *we meet )
( meeting )
...

...

Figure 1: Sample grammar rules for ESST [8]. Lexical items (in
lower-case) and calls to semantic nets (in uppercase or enclosed in square
parentheses) are freely mixed. A ‘*’ indicates optional token, a ‘+’ indi-
cates repeatable token, a ‘*+’ is equivalent to the Kleene star, i.e., indicates
that token can occur zero or more times. For instance, rule (1) accepts bye,
good bye, bye bye, etc.

There are two stages in the development of a semantic gram-
mar. First, the relevant concepts of the domain have to be estab-
lished. This corresponds to finding the nonterminals of the gram-
mar. Then, in an arduous and lengthy process, appropriate right-
hand sides need to be written to try to capture all the possible ways
in which a particular concept can be expressed.

Once the grammar is deemed developed enough, it is complied by
PHOENIX into Recursive Transition Networks (RTN), each gram-
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mar nonterminal giving rise to one RTN. A subset of the nonter-
minals are marked as starting symbols of the grammar, i.e., able to
stand at the root of a parse tree. Also, skipping of input words is
only allowed between them.

Given an input sentence to be parsed, PHOENIX preprocesses it
by eliminating out-of-vocabulary words (i.e., words not appear-
ing in the grammar) and expanding some contractions (e.g. I’m! I am). Then the parse engine conducts a left-to-right Viterbi
search in which all possible traversals of the RTNs are pursued
(top-down) as long as they match the input words. Pruning and
scoring heuristics include maximizing coverage, i.e. prefer those
interpretations (semantic trees) that cover the largest number of in-
put words, and minimizing tree complexity, i.e. prefer those inter-
pretations that contain the smallest number of subconcepts (nodes
of the semantic tree). The resulting top-ranked interpretation is the
most coherent semantic tree of the input utterance, according to the
given grammar.

3. STOCHASTIC COMPONENT
The semantic analyzer using a stochastic method is based on Hid-
den Markov Modeling (HMM). The functional diagram is given
in Figure 2: During training, the parameter estimator establishes
the model from the transcribed utterances (output of the speech
recognition component) and their corresponding semantic repre-
sentations. In the decoding or testing stage, the semantic decoder,
implemented as an ergodic HMM [9], outputs the most likely se-
mantic representation given a transcribed utterance as input.

sequences, S
semantic

utterance
transcriptions, O

TESTING
DECODING/
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semantic
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semantic
sequence, S

model
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Figure 2: Overview of the stochastic parsing component [8].
The stochastic component uses the same techniques for training
and decoding that were developed for ATIS and MASK [7], thus
achieving a certain degree of portability and flexibility. Only the
data sets and their encoding are domain-specific. In our new ESST
task, the semantic sequences used for training and evaluation are
derived from the parse trees that were automatically produced by
the CMU-PHOENIX parser. Using these annotations and an appro-
priate paradigm for evaluating translation accuracy provided the
means to validate the stochastic component and to compare it with
the rule-based method.

4. KNOWLEDGE REPRESENTATION
The parameters of the stochastic model are estimated given prepro-
cessed word sequences along with their semantic representation.

Semantic representation The trees generated by PHOENIX are
illustrated in Figure 3(a). The parser tries to model the relevant
ESST information structures as well as the lexical realization of
these structures in various languages. A set of semantic tokens cor-
responds to concepts and sub-concepts in an utterance. These se-
mantic tokens can be seenas the vertices of a directed acyclic graph
in which the edges refer to concept-subconcept relations. For

example in Figure 3(a), a typical temporal concept <temp> has<point> and <interval> as daughter concepts, and <interval> in
turn has daughters<start point> and<end point>, etc. The leaves
of the tree correspond to the lexical items present in the input ut-
terance, e.g., probably, sometime, etc. Each speech-act contains a
separate top-level concept (root of a semantic tree). The speech-
acts are then concatenated without any ordering constraints. For
instance in Figure 3(a), the utterance is parsed into the independent
semantic speech-acts<interj>, <temp> and<agree> that capture
the top-level meaning of probably, sometime between nine and five
and would be good.

probably

<interj>

would be good

<agree><temp>

<time_unit>

sometime

<point>

<start_point> <end_point>

<time> <time>

<hour> <hour>

between and fivenine

<interval>

(a)<interj> probably<temp><point><time unit> sometime<temp><interval> between<temp><interval><start point><time><hour> nine<temp><interval> and<temp><interval><end point><time><hour> five<agree> would<agree> be<agree> good

(b)

Figure 3: Conversion of semantic trees into tree-labels exemplified for
probably sometime between nine and five would be good [8]; (a) PHOENIX
tree-representation, (b) correspondingtree-labels to be used by the stochas-
tic parsing component. Each label represents the complete path from the
root down to the leaf token in the tree.

The rule-based PHOENIX output is not in a form that can be di-
rectly used by the model parameter estimator of the stochastic
component. Each individual word of the input utterance must
have a corresponding semantic label. The tree-based represen-
tation (Figure 3(a)) was converted into sequences of semantic
tree-labels (Figure 3(b)). A tree-label represents the complete
path from the root down to the lowest level token. An example
path trough the tree is <temp>!<interval>!<start point>!<time>!<hour> 7! nine.

The PHOENIX system does not perform a detailed, syntactic anal-
ysis of the input utterance. Spontaneous speech effects, ill-formed
parts-of-speech and expressions that are not relevant to the task at
hand, are simply ignored by the parser. E.g., in I am busy all af-
ternoon that Thursday so if you move all the way to the fourth of
August I am free in the afternoon there or the morning of the fifth
the words in boldface are ignored. In order to convert the semantic
tree to the encoding required by the stochastic method, unlabeled
words are mapped into a <GARBAGE> label, and automatically
inserted into the semantic sequence.

Utterance preprocessing The transcriptions of the utterances
were broken down into smaller SDUs (Semantic Discourse Units)
using a combination of acoustic, lexical, semantic and statistical
knowledge sources, as described by Lavie [4].

Stochastic methods require substantial amounts of data for the
estimation of their parameters. As the data sparseness requires
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matching the model size to the amount of training data available,
a category-based unification is used in order to reduce the input
variability. The eight word categories employed in this domain are
/DAYTIME/, /LOCALITY/, /MEAL/, /MONTH/, /NAME/, /NUMBER/,
/ORDINAL/ and /WEEKDAY/.

Words that systematically correspond to the semantic<GARBAGE> label as they are judged to be irrelevant with
respect to ESST are called ffillerg words. In the preprocessing,
the ffillerg - <GARBAGE> correspondences are removed from
the training sequences, since they do not contain nor propagate
any meaningful information. However, words that correspond to<GARBAGE> only in context of a specific SDU are not removed.

5. STOCHASTIC MODEL
Semantic decoding consists of maximizing the conditional proba-
bility P (SjO) of some state sequenceS given the observation se-
quence O. Using Bayes rule, this probability is reformulated as
follows: [S]opt = argmaxS fP (S)P (OjS)g (1)

Given the dimensionality of the sequence O, the direct computa-
tion of the likelihood P (OjS) is intractable. However, simple re-
cursive procedures allow to solve this problem. They imply the es-
timation of Hidden Markov Model (HMM) parameters, the bigram
state transitions probabilities A = P (sjjsi) and the observation
symbol probability distribution B = P (omjsj) in state j.

Figure 4 illustrates the topology of the Markov Model es-
tablished by the parameter estimator for use by the seman-
tic decoder (Figure 1). Semantic tree-labels are defined as
the states sj , the preprocessed words as the observations om.
The example states <interj><conj>, <agree>, <sugg loc> and<sugg loc><where> can follow each other, the model is ergodic.

<interj><conj> <agree><sugg loc> <sugg loc><where>
Figure 4: Ergodic semantic Markov Model; the states <interj><conj>,<agree>, <sugg loc> and <sugg loc><where> are fully con-
nected [8].
Based on the stochastic model, the most likely state sequence is
determined using the Viterbi algorithm [9]. Given a significant
amount of model parameters, a back off technique [2] allows to
adequately estimate probabilities of rare observation and state oc-
currences in the training corpus.

6. TRAINING CORPUS
The stochastic model of the understanding component has been
trained using 9,525 utterance transcriptions along with their se-
quences of semantic tree-labels. The human-to-human dialogs re-
sult in a relatively large average utterance length (over 26 words),
as well as a large lexicon size (2,623 different words). In the
PHOENIX system each SDU is analyzed independently. In the cor-
pora, the SDU boundaries have been determined prior to training
and testing [4]. After this segmentation, the average length of the
analysis sequences is reduced to 9.3 words.

Utterance preprocessing reduces the lexicon size considerably
(552 different words), notably because of the relatively large num-
ber of ffillerg words which are not considered. This implies that

PHOENIX ignores the conversational character of the negotiation
dialogs. Focalizing on the essential parts of the utterance leads to
rather terse but acceptable translations [11]. The 133 basic seman-
tic tokens combine to create 2,711 tree-labels.

7. PERFORMANCE ASSESSMENT
The stochastic component has been evaluated and compared in
performance with the rule-based PHOENIX parser which is inte-
grated in the JANUS speech-to-speech translation system. The
test corpus consists of 258 utterance transcriptions containing 759
SDUs. The semantic accuracy was evaluated at the SDU level first
using an exact-match paradigm that compares the hypothesis and
the reference on a label-by-label basis. Since only the sequential
alignment of relevant semantic tree-labels is used for translation,
the semantic evaluation does not account for<GARBAGE> labels.
In this study, the semantic reference representation is the output
of the PHOENIX parser. A human expert analyzes the incorrectly
flagged sequences. If these are equivalent to, or more appropriate
than, the reference, they are re-scored as correct.

For the evaluation of the translation accuracy from English to Ger-
man, the SDUs have been further broken down into the smaller
speech-acts. The corresponding semantic sequences have been
translated using the PHOENIX generation module. Each speech-
act translation is then assigned a grade by human graders as de-
scribed in [1].

Quantitative results The performance evaluation results of the
stochastic component for natural language understanding in ESST
are given in Table 1 and are compared to those obtained by the rule-
based PHOENIX parser.

Semantic error (%) Translation error (%)
STOCHASTIC STOCHASTIC PHOENIX

18.4 30.1 23.8

Table 1: Semantic error (on the SDU level) as well as translation errors
(on the speech-act level) obtained by the stochastic component for natural
language understanding in ESST.

The stochastic component obtains a 18.4% semantic error rate on
the SDU level. In the translation evaluation, it obtains a 30.1%
speech act error compared to 23.8% measured for the rule-based
parser. The fact that we used a corpus of uncorrected semantic
representations produced by PHOENIX means that the stochastic
implementation is limited by the inevitable shortcomings of the
rule-based method. The error scores of the stochastic component
are therefore relative to the performance of P HOENIX. In fact, the
experiences in MASK [7] lead to the conclusion that the stochas-
tic component is able to outperform the rule-based parser, if the
training corpus is entirely designed for the stochastic method. The
translation results are also likely to be influenced by the perfor-
mance of the PHOENIX translation generator which is again opti-
mally adapted to the rule-based parser.

Qualitative analysis The semantic hypotheses output of the
stochastic parser were analyzed in order to identify the strengths
and weaknesses of the method (Figure 5).

In the first example, the phrases are not good, that is not good, etc.,
need to be matched with the<my unavail> label. As PHOENIX at-
tempts to match entire expressions, the rule-based parser fails if in-
sertions occur, e.g. that is not any good, that is really not so good,
isn’t good, etc. (P1 ). In turn, the stochastic decoding is robust.
In S1, it identifies the isolated word not as a reference word for<my unavail>, which is then successfully propagated, since the
transition probabilities between labels including<my unavail> are
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S1:<my unavail><wont work> that is not any good
P1:<GARBAGE> that is not any<agree> good
S2:<sugg meet> we can go<sugg meet><temp><point> into the<sugg meet><temp><point><time day> evenings<conj> or<sugg meet><temp><point><next temp> the<sugg meet><temp><point><day week> weekends
P2:<GARBAGE> we can go into<sugg meet><temp><point> the<sugg meet><temp><point><time day> evenings<conj> or<sugg meet><temp><point> the<sugg meet><temp><point><day week> weekends
S3:<my unavail> I will be choking on<my unavail><temp><point><rest of> the smog of Los<my unavail><temp><point><time unit> Angeles
P3:<GARBAGE> I will be chocking on<GARBAGE> the smog of Los<GARBAGE> Angeles

Figure 5: Parsing examples demonstrating the strengths and the weak-
nesses of the stochastic method in ESST, S = stochastic parser, P =
PHOENIX parser.

high. They outweigh the weak probabilities of some unknown or
less frequent insertions.

The stochastic method is also flexible. Instead of triggering<GARBAGE> labels as does PHOENIX for we can go into in P2, it
propagates the significant<sugg meet> resulting in a smooth se-
mantic representation (in the test data the stochastic method trig-
gers 1,186 <GARBAGE> labels compared to 1,659 for the rule-
based method).

The flexibility of the stochastic method, illustrated in S2, appears
to have turned out to be a drawback. In S3, the phrase I will be
triggers <my unavail>, learned from I will be out of town, I will
be away, etc., in the training. The phrase the smog of triggers<temp><point><rest of>, learned from the rest of that day, the
rest of this month etc. regardless of the weak observation proba-
bilities of smog and Los. Propagating the incorrect labels results
in an erroneous annotation of the entire speech-act.

8. SUMMARY AND CONCLUSIONS
In this paper we have reported experiences in porting a stochas-
tic component for natural language understandingfrom a setting of
human-machine interaction to that of a human-human interaction.
Tests were performed in the context of an appointment scheduling
task, the English Spontaneous Scheduling Task (ESST).

The use of the stochastic component for natural language under-
standing in ESST involved porting the method to a substantially
different domain. Compared to the simpler semantic frames used
in ATIS and MASK, the PHOENIX semantic tree representations
have been adapted to the stochastic method. The derivation of tree-
labels models the nestednessof human languageand therefore sup-
ports a more efficient propagation of semantic information. The
study shows that task domain and language porting of a stochas-
tic method is relatively straightforward. It is sufficient to train the
system on data sets based on a semantic formalism which is appro-
priate for the application and language.

Comparative performance evaluations in this domain were carried
out using the stochastic component and the rule-based PHOENIX

parser. Even though a suboptimal semantic training corpus (gen-
erated by PHOENIX) was used, the stochastic decoder obtains rea-
sonable semantic and translation errors (18.4% and 30.1% respec-
tively). Qualitatively, the stochastic method enables a robust de-
coding through modeling of isolated words, as opposed to the rule-
based parser in which particular, task-dependent expressions need
to be defined by hand. These represent an over-specialization,
since the system fails if insertions occur within these expressions.
The stochastic method is also flexible: It creates smooth seman-
tic representations through labeling and propagating a maximum
amount of significant labels. However, this risk-taking strategy is
penalized as it implies a higher risk of incorrect concept triggering
and error propagation.

Certain aspects of the presented method could be further investi-
gated and expanded. Improvements may be achieved if the train-
ing corpus was entirely designed for the stochastic method and
more training data were available given the significant number
of model observations. As concluded from the experiences in
MASK [7], the design of the stochastic component focuses on the
creation of a semantic corpus using an iterative labeling approach.
By adapting the semantic labels to the method, the stochastic com-
ponent outperforms the rule-based parser. Also, to be able to eval-
uate the translation accuracy, the translation generation component
should be redesigned to be optimally adjusted to the encoding per-
formed by the stochastic parser.

The initial use of statistical modeling for semantics was not inte-
grated with the speech recognition component. A first step in this
direction would be to compare the component performance using
the corrected utterance transcriptions with those obtained when us-
ing real speechrecognizeroutput either for componenttraining and
testing or testing only.
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