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Abstract—State-of-the art statistical machine translation de-
pends heavily on the availability of domain-specific bilingual
parallel text. However, acquiring large amounts of bilingual
parallel text is costly and, depending on the language pair,
sometimes impossible. We propose an alternative to parallel text
as machine translation (MT) training data; audio recordings
of parallel speech (pSp) as it occurs in any scenario where
interpreters are involved. Although interpretation (pSp) differs
significantly from translation (parallel text), we achieve surpris-
ingly strong translation results with our pSp-trained MT and
speech translation systems. We argue that the presented approach
is of special interest for developing speech translation in the
context of resource-deficient languages where even monolingual
resources are scarce.

I. INTRODUCTION

Translation models (TMs) for statistical MT are traditionally
trained from manual translations presented in bilingual,
sentence-aligned text corpora. Large amounts of domain-
specific, bilingual parallel text are essential to ensure good
automatic translation performance. The acquisition of such
data can prove time-consuming and costly. This is especially
true in the case of resource-deficient languages where the
amount of pre-existing bilingual parallel text data is limited.
With no or only poorly performing automatic translation
available, many bilingual communication scenarios are only
possible with the help of interpreters. We propose the use
of audio recordings of interpreter speech together with the
source language speech, from which the interpretation is
being rendered, as an alternative to parallel text as MT
training data. Although parallel speech (interpretation) is
fundamentally different from parallel text (translation), our
experiments show that TMs can be successfully trained from
parallel speech alone, without the use of any parallel text
data and at surprisingly high performance levels.
Our experiments are conducted on a large-scale simultaneous
interpretation task for which we have approximately 100h of
pSp available. This enables us to introduce different levels of
resource-limitation to examine its effect on MT and speech
translation (ST) trained from recordings of pSp. In order
to use pSp in a standard training setup for phrase-based
statistical MT, we first transcribe both sides of the parallel
speech data using automatic speech recognition (ASR). The
resulting ASR hypotheses are then aligned on an utterance
basis using alignment strategies specifically tailored to the

parallel speech of simultaneous interpretation (SI).
We are not aware of any previous work on training TMs from
audio recordings of pSp. However, this work is related to and
stems from ideas found in previous work on a) improving
target language dictation systems for translators from parallel
source language text [1], [2], [3], [4], [5] or read speech [3],
b) improving speech translation of source language speech
for which parallel target language speech is available [6] and
c) interpreter speech supervised acoustic model training as
used in [7].

II. TRANSLATION, INTERPRETATION AND PSP

Translation refers to the transfer of meaning from source
language text to target language text, with time and access to
resources as dictionaries, phrase books, et cetera. Interpretation
(as used in the context of this work), refers to the transfer
of meaning from source language speech to target language
speech. Interpretation happens either simultaneously, while
the source language speaker continuously speaks, or consecu-
tively, after the source language speaker has finished speaking.
In the latter case, the source and target speech – and the
information encoded in that speech – is divided into segments,
since interpreter and source speaker wait for their respective
turns before speaking. While such a natural segmentation is
not given in the context of simultaneous interpretation, the fact
that the interpreter has to keep pace with the source language
speaker still leads to a time alignment of information in source
and target speech.
In the context of this work, we only use SI and no consecutive
interpretation. Nevertheless, we define the term parallel speech
generally as speech of a source language speaker together
with the target language speech of an interpreter. That is, we
include simultaneous and consecutive interpretation into this
definition. Parallel speech therefore always refers to interpre-
tation. It specifically excludes speech of translators as it was
for example used in [3] in the context of dictation systems for
translators.
It is important to note that interpretation differs significantly
from translation. Interpreters know when and under what
circumstances to omit, but also to elaborate and change
information and they do not only convey all elements of
meaning, but also the intentions and feelings of the source
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TABLE I
DATA STATISTICS (PARALLEL SPEECH, DEV06, EVAL07)

English Spanish
pSp dev eval pSp dev eval

speech utt. 65.3k 1287 1926 63.2k 1707 2085
transl utt. 65.3k 1194 1167 63.2k 792 746
words [k] 954.4 27.9 26.0 897.0 22.4 25.8
audio [h] 111.3 3.2 2.7 105.2 2.3 2.7

speaker [8]. The differences between SI and translation are
strongly influenced by the highly demanding nature of the SI
task. In SI, interpreters have to apply special strategies to keep
pace with the source language speaker. Corrections of previous
interpretation errors, but also fatigue and stress negatively
affect the SI quality. Strategies applied during SI include
anticipation-strategies [9] and compensatory strategies [10].
For example, interpreters anticipate a final verb or syntactic
construction before the source language speaker has uttered the
corresponding constituent. The interpreter confirms this antici-
pation or corrects it when he receives the missing information.
The use of open-ended sentences that enable the interpreter
to postpone the moment when the verb must be produced is
another anticipation-strategy. Compensatory strategies include
skipping, approximation, filtering, comprehension omission
and substitution. These strategies can lead to a significant loss
of information in SI. Experiments reported during the course
of the TC-STAR project [11] suggest that the information
loss for English-to-Spanish SI as provided during European
Parliament Plenary Sessions amounts to approximately 9%.
This number was estimated by first creating comprehension
questions from an English speech and then determining the
number of questions that cannot be answered if only the
Spanish SI of the English speech is given. Further, it was
reported in [11] that the effective information loss when
listening to SI is with 29% significantly higher. This increase
in information loss results from the combination of missing
information in SI and the difficulty of human evaluators to
follow the flow of interpreter speech. In the reported evaluation
scenario, the human evaluators were allowed to listen to the
recorded interpreter speech twice and they could interrupt the
playback to write down their answers.
The strong difference between interpretation and translation
can also be expressed in terms of BLEU metric. On our
‘dev05’ development set (compare Section III-A), we com-
puted a BLEU score of only 14.2, when comparing Spanish-
to-English (Sp→En) interpretation with two translation refer-
ences. For English-to-Spanish (En→Sp), the BLEU score was
18.2. In both cases, we used a manual transcription of the
interpreter speech, i.e. the WER was 0%.

III. EXPERIMENTAL SETUP

A. Data and Scoring

European Parliament Plenary Sessions (EPPS) are broadcast
live via satellite in the different official languages of the
European Union. Each language Li has a dedicated audio
channel. An interpreter provides the simultaneous interpreta-
tion in language Li whenever a politician is speaking in a

language Lj 6=i. In the case that a politician is speaking in the
respective language of an audio channel, the original speech of
the politician is being broadcast on that channel. In addition to
the live broadcasts, the proceedings in the parliament are also
published in the form of so-called final text editions (FTEs)
in all official languages within approximately two months of
the session. These FTEs are created by a multitude of human
transcribers and translators from recordings of the original
politician’s speeches.
For our experiments we use the EPPS part of the English
and Spanish TC-STAR spring 2007 verbatim task development
and evaluation sets; ‘dev06’ and ‘eval07’. It has to be noted
that these sets are only comprised of politician speech and
do not include any interpreter speech. This stands in contrast
to our pSp corpus. This corpus was collected in-house by
recording the European Parliament live broadcast English and
Spanish audio channels, which both contain a mix of politician
and interpreter speech. ASR acoustic model (AM) training
data, as provided during the TC-STAR evaluation campaign,
is also comprised of a mix of politician and interpreter speech.
Our language models are (mostly) estimated on the FTEs or,
in case of the constrained Spanish ASR (compare Section
III-B), exclusively on the human reference transcription as
used for acoustic model training. Detailed data statistics for
dev06, eval07 and the pSp corpus are given in Table I. For
dev06 and eval07, the number of speech utterances differs
from the number of translation utterances due to the mismatch
of automatic speech/non-speech segmentation applied prior to
ASR and the manual utterance segmentation of the reference
translations. The number of running words in the pSp corpus
are estimated on the first best hypotheses of our standard
Spanish and English ASR systems presented in Section III-B.
The pSp corpus is comprised of sessions from the time
periods 04MAY05-26MAY05 and 08SEP05-01JUN06. The
development (dev) set has sessions from 06JUN05-06SEP05
and the evaluation (eval) set has sessions from 12JUN06-
28SEP06. AM training data is from the time period May 2004
to January 2005. The FTEs are from the time period April
1996 to May 2005.
In addition to the development and evaluation sets, we use one
additional Parliamentary session from 26OCT04 to tune our
alignment algorithm presented in Section IV-B. We extracted
this from the TC-STAR verbatim 2005 dev set. In contrast
to the other TC-STAR dev and eval sets used in this work,
‘dev05’ is a) comprised of a mix of politician and interpreter
speech b) forms a pSp corpus and c) is provided with a
manual utterance segmentation that is kept consistent for the
reference transcriptions and verbatim reference translations.
This means in particular, that for all English and Spanish
speech utterances, aligned transcription references and trans-
lation references are provided. The English (Spanish) side of
dev05 consists of 1256 (1589) utterances, with 17.4k (14.7k)
running words and 95 (89) minutes of audio.
For scoring ASR and MT performance we use non-punctuated,
lowercased references. ASR performance is measured in word
error rate (WER) and MT performance is measured in IBM
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TABLE II
STANDARD ASR SYSTEMS

dev06 eval07
Spanish English Spanish English

PPL 89 108 89 106
WER 8.4 13.9 9.0 12.2

BLEU using two reference translations. We use the multiple
reference word error rate (mWER) segmentation script, as it
was provided by RWTH Aachen University within TC-STAR,
to align the translated speech utterances to the translation
references.

B. Automatic Speech Recognition

The employed ASR systems were developed with the Janus
Recognition Toolkit (JRTk), featuring the IBIS single pass
decoder. The SRI Language Model Toolkit [12] was used for
language model (LM) training. Table II gives an overview
on the English and the resource-unconstrained Spanish ASR
system. A detailed description of these systems is given in the
following.
The English ASR system consists of four ASR sub-systems
that were developed in our laboratory for the TC-STAR Spring
2006 ASR Evaluation [13]. The decoding setup features a first
decoding pass in which two speaker-independent ASR systems
with different acoustic front-ends are applied. A traditional
Mel-frequency scaled Cepstral Coefficients (MFCC) front-end
and a Minimum Variance Distortion-less Response (MVDR)
front-end is used. In the same manner, the second decoding
pass features two ASR systems with speaker-dependent AMs.
Unsupervised speaker adaptation is performed on the output
of the previous decoding pass. At the end of both decoding
passes, confusion network combination is applied to combine
the output of the individual ASR systems. The AM was trained
on 80h of English EPPS. The dictionary consists of 47K
pronunciation entries. The 4-gram LM was trained on the 2006
available EPPS transcriptions and FTEs, the Hub4 Boradcast
News data and the English part of the UN Parallel Text Corpus
v1.0.
The decoding setup for the standard Spanish ASR is identical
to the setup of the English ASR system. The AMs were
trained on 140h of Spanish EPPS and Spanish Parliament
(CORTES) data. The dictionary has 74.2K entries. The 4-
gram LM was trained on the Spanish FTEs, the CORTES texts
and the EPPS + CORTES transcriptions. In addition to the
standard Spanish ASR system we use two constrained Spanish
ASR systems, cSPASR-0 and cSPASR-1, to simulate ASR
performance levels encountered in the context of resource-
deficient languages. In the situation of resource-limitation,
the lack of text data and transcribed audio data leads to
weak LMs and weak AMs. Both contributes to an increased
WER. To simulate resource-limitation, we first (cSPASR-0)
constrained the Spanish LM to the 748k running words of the
transcriptions that were used to train the AM. The constrained
LM yields a perplexity (PPL) of 178 on dev06 and a PPL
of 177 on eval07, resulting in word error rates of 16.1% and
16.5%, respectively. To simulate a weaker AM (cSPASR-1),
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Fig. 1. Dev05 F1-measure and dev06 BLEU for different padding values

we further limited the system to a context independent phone-
set. This results in an AM which obtains a WER of 33.3% on
dev06 and 33.1% on eval07.

C. Machine Translation

For MT, we use the Interactive Systems Labs beam search
decoder [14]. The decoder combines multiple model scores
to find the best translation. To optimize the system, we use
Minimum Error Rate (MER) Training as described in [15].

IV. MT FROM PARALLEL SPEECH

A. Translation Model Training

We use a phrase-based MT approach. Our TMs therefore
consist of phrase-to-phrase translation pairs. The phrase tables
are trained with the help of the GIZA++ toolkit [16] and
University Edinburgh’s phrase model training scripts

In contrast to a traditional MT training approach, we do not
extract phrase tables from a bilingual, sentence aligned text
corpus of manual translations. Instead, we train TMs from
interpretation, given in the form of a pSp corpus. In order to
do so, we first transcribe both sides of the pSp corpus using
ASR and then we introduce an alignment of the resulting
ASR hypotheses. This alignment is speech utterance based,
meaning that we align to each automatically transcribed source
utterance the related target speech ASR transcription. This
forms the first part of our translation model training corpus.
The second part results from repeating the same alignment
procedure in the reverse direction. The alignment procedure is
described in detail in the following section.

B. Aligning Interpreter Speech

If not mentioned otherwise, the pSp corpus used in this
section is transcribed at an estimated English and Spanish
WER level of 12-14% and 9%, respectively. We estimate these
numbers based on the English and Spanish ASR performance
on dev06 and eval07, since no manual transcription of the pSp
corpus is available.
Since simultaneous interpreters have to keep pace with the
source language speaker, an implicit time alignment between
source and target language speech is already given. We can
exploit this fact to align source speech utterances to parallel
target speech by considering the target speech snippet that
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SPANISH UTTERANCE: “también”
VERBATIM TRANSLATION: “in addition”
PARALLEL SPEECH SNIPPET: “and that would mean that we could 
already start making some of the payments in the year two 
thousand and five also in addition to that we are going to try 
to make sure that members of staff from different members 
states of the european union will be granted an equal status”
---------------------------------------------------------------

SPANISH UTTERANCE: “trataremos de que todo el personal tenga”
VERBATIM TRANSLATION: “we shall try that all the staff will 
get”
PARALLEL SPEECH TRANSCRIPT: “in addition to that we are going 
to try to make sure that members of staff from different 
members states of the european union will be granted an equal 
status we look forward to amend the statuate of course we hope 
that that will be approved as soon as possible and we hope that 
it proves viable in practice”

Fig. 2. ±6 seconds utterance based padding of parallel speech

starts/ends x seconds before/after the source speech utterance
starts/ends. We need to include target speech before the start
time of the respective source utterance since we do not
know which of the audio channels contains interpreter speech.
In fact, it often occurs that both audio channels consist of
interpreter speech. In such a case the politician that took the
floor in the Parliament is giving a speech in a language other
than English and Spanish. To minimize computation time, we
decode the pSp corpus only once, based on automatic speech
utterance segmentation derived via voice activity detection
prior to ASR. To extract the ASR hypotheses of the padded
speech snippets, we rely on the hypothesized word-start and
word-end times.
In order to find an optimal padding value x , we conducted two
sets of experiments. First, on dev05 and for different values
of x, we computed the F1-measure in respect to uni-gram
matches between the padded, automatically transcribed pSp
snippets and the for dev05 available reference translations.
Figure 1 depicts how the F1-measure changes for different
values of x. A peak is obtained at x = 2 seconds for
both cases, when aligning English utterances to Spanish pSp
snippets and when aligning Spanish utterances to English pSp
snippets. In the second set of experiments, we created seven
different parallel MT training corpora from the automatically
transcribed pSp; one training corpus each for x ∈ [0 − 6].
After extracting seven different phrase tables from these MT
training corpora, we computed the translation performance for
Sp→En on dev06, using these phrase tables. As we can see in
Figure 1, the BLEU score again peaks at x = 2, showing that
the F1-measure computed on dev05 correlates well with the
translation performance on dev06. In other words, the optimal
padding value x for aligning our pSp corpus can be well
predicted by simply computing the F1-measure on dev05.
In addition to a simple word-time based padding of the
parallel speech snippets for aligning the pSp corpus, we also
experimented with a more sophisticated two-pass alignment
strategy, as presented in the following.
By manually inspecting the pSp present in dev05, we found
that, if the information contained in the source utterance
is at all present in the pSp, a ±6 seconds utterance based
padding almost always guarantees that the information can be

found in the respective target audio snippet. By ±6 seconds
utterance based padding we refer to the case where a target
speech snippet is comprised of all target speech utterances
that fall into the time window that is formed by padding the
source utterance start/end time with 6 seconds. Figure 2 gives
an example of pSp that is aligned based on a ±6 seconds
utterance padding. In addition to the transcription reference of
the Spanish speech utterance and the respective English pSp-
snippet, the Figure shows one of the two Sp→En translation
references. The part of the English speech snippet that is
directly related to the Spanish speech utterance is marked with
an underline. As can be seen, the padded pSp-segment contains
too much irrelevant information. The example also shows the
strong difference between interpretation and translation.
Our two-pass algorithm for aligning pSp to source speech
utterances operates on a per source utterance basis. In its
current implementation, the algorithm operates on a first-best
ASR hypothesis basis only, but it is scalable to n-best ASR
hypotheses. In addition to the source utterance at hand, the
algorithm also considers all neighboring source utterances that
overlap in their respective target speech snippet with the target
speech snippet of the current source utterance. In a first step,
the combined forward and backward translation probability
for each source word to each target word is computed and
an alignment link is introduced if the combined translation
probability is above a specific threshold tp and if the absolute
distance between source word start time and target word
start time is below a specific threshold td. The word-to-word
translation probabilities are based on IBM4 word lexicons. The
lexicons are trained in a first pass on the parallel MT training
corpus that results from a 2 seconds word-time based padding
of the pSp snippets. The alignment link between source word
sw and target word tw is weighted by the combined translation
probability times the ‘importance’ of the target word. We
define the importance of the target word as:

importance(tw) = 1.0− sL ∗ LM(tw) (1)

with sL equal to the length in words of the target speech
snippet and LM(tw) equal to the uni-gram LM probability
of the target word. In a next step, we find the optimal ‘left
cut’ position in the target speech snippet that defines all words
before this position as irrelevant to the source utterance and all
words after this position as relevant. This is done by computing
the sum over all alignment link weights alw left of a cut
position candidate that belong to neighboring source utterances
and then adding the sum computed over all alignment link
weights alw right of the cut position candidate that belong
to the current source utterance. The cut position with the
highest overall sum is selected. During this process we also
consider alignment link clusters forming target bi- and tri-
grams. For each such cluster we introduce additional alignment
weights that are included in the overall sum. The alignment
weight alwBI for a bi-gram alignment cluster formed by the
alignment links al1 and al2 is for example given as:

alwBI(al1, al2) = (alw(al1) ∗ alw(al2))bw (2)
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TABLE III
PRECISION, RECALL AND F-MEASURE ON DEV05

n alignment EnUtt-SpSnip SpUtt-EnSnip
Pre Rec F1 Pre Rec F1

1 ±2sec 34.8 31.7 33.2 24.9 36.7 29.6
2-pass 38.9 30.8 34.4 29.7 35.0 32.1

2 ±2sec 15.2 12.4 13.7 9.6 13.6 11.2
2-pass 17.5 12.7 14.7 11.6 13.9 12.7

3 ±2sec 8.2 6.4 7.1 4.8 6.8 5.6
2-pass 9.7 6.6 7.9 5.7 6.9 6.3

TABLE IV
SPANISH-TO-ENGLISH MT PERFORMANCE

dev06 eval07
∼WER 9% 16% 33% 9% 16% 33%
±2sec 34.3 32.1 28.2 33.5 32.6 28.5
2-pass 35.1 33.5 29.1 34.3 33.5 30.1

with the bi-gram weight bw to allow for a flexible addi-
tional weighting of such bi-gram link clusters. Accordingly
an optimal right cut position is found by computing the sum
over all alignment links left of the cut position that belong
to the current source utterance and adding the sum computed
over all alignment links right of the cut position that belong
to neighboring source utterances.
To optimize the two-pass alignment algorithm, we performed
a grid search on dev05, aiming for a maximal value of F1-
measure that is based on matching uni-grams in the pSp
snippets and the reference translations. In addition to uni-
gram F1-measure (and precision and recall), we also computed
the respective values for n-gram matches with n ∈ [1 − 3].
Table III shows the results for the two alignment passes of the
algorithm. The first pass is identical to the 2 seconds word-
time based padding of the speech snippets. The table shows
that the two-pass algorithm yields higher F1 values at a higher
precision and lower recall than the word time based padding.
Further, we can see that the overall low recall degrades
strongly for higher order n-grams. This underlines the strong
difference between translation and interpretation. Table IV lists
the Sp→En MT performance when using the two different
alignment strategies and automatically transcribing the pSp
corpus at different Spanish WER levels. At all three Spanish
WER levels, the two-pass alignment strategy outperforms the
word-time based alignment by approximately 1 BLEU point.
This is in all cases statistically significant (p < 0.05). The
results also show that, even for a highly degraded Spanish
transcription performance at 33% WER (3.7 times worse than
the transcription performance of the standard Spanish ASR
system), the MT performance degrades only by approximately
12% relative on the eval07 set. This indicates that training
TMs from automatically transcribed pSp is robust to strong
variations in ASR performance on one side of the pSp corpus.

C. Machine Translation and Speech Translation Results

Table V lists the Sp→En and En→Sp MT results obtained
when using TMs trained from pSp. We list the results for pSp
that was transcribed at different Spanish WER levels; the ap-

TABLE V
TRAINING CORPUS DEPENDENT MT PERFORMANCE

training corp. dev06 eval07
type, WER Sp-En En-Sp Sp-En En-Sp
translations, 0% 44.5 41.4 43.9 40.9
interpr., ∼ 9% 35.1 32.8 34.3 31.2
interpr., ∼16% 33.5 27.3c 33.5 27.0c

interpr., ∼33% 29.1 24.3c 30.1 23.3c
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Fig. 3. BLEU score dependent on MT training corpus size

proximate Spanish WER achieved on the pSp is shown in the
first column. The English ASR system was kept unchanged;
we estimate its WER at approximately 12-14% WER, given
its performance on dev06 and eval07. BLEU scores marked
with c were computed using the constrained Spanish LM.
For comparison, we also list results when training TMs on a
bilingual, sentence aligned text corpus of manual translations.
This text corpus was extracted from the bilingual MT training
corpus as it was provided during the TC-STAR evaluation.
We randomly selected sentences pairs from the original TC-
STAR training corpus, until the number of running words on
the English part reached 954.4k. This is the same number of
running words as we estimated for the English part of our pSp
corpus. It has to be noted that the TC-STAR training corpus
is based on the EPPS FTEs. It therefore exhibits a certain
mismatch in style compared to verbatim style transcriptions
and translations. To reduce this mismatch we pre-processed
the text corpus accordingly.
The results show a degraded translation performance for
training TMs from pSp, compared to using a bilingual text
corpus of manual translations for training. Using our best
performing ASR systems, the absolute degradation amounts to
approximately 10 BLEU points for both translation directions.
This degradation in performance results from a) word errors
introduced by automatically transcribing English and Spanish
speech b) the mismatch between translation and interpretation
and c) errors when aligning the interpreter speech. Neverthe-
less, we are able to report surprisingly high BLEU scores of
up to 34.3 for Sp→En at WER levels of approximately 9% for

TABLE VI
TRAINING CORPUS DEPENDENT ST PERFORMANCE (EVAL07)

training corp. Sp-En En-Sp
type, WER 9.0% 16.5% 33.1% 12.2%
translations, 0% 40.0 36.0 27.8 33.8
interpr., ∼ 9% 31.5 - - 26.1
interpr., ∼16% - 29.1 - 22.8c

interpr., ∼33% - - 21.0 19.8c
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Spanish ASR and 12-14% for English ASR. As already noted
at the end of Section IV-B, we observe only a relatively small
degradation in MT performance when introducing a strong
degradation in Spanish ASR performance from approximately
9% to 33% WER. In addition to the results listed in Table V,
we also computed the MT performance on dev05 for our best
pSp-trained models. We achieved BLEU scores of 43.5 and
34.8 for Sp→En and En→Sp, respectively. These scores are
2 to 3 times higher than the BLEU scores we estimated for
the dev05 manual transcription of parallel interpreter speech;
compare Section II.
The highest achieved Sp→En MT performance on eval07 of
34.3 BLEU is on the same level as the MT performance
of TMs trained on 100k English words of sentence aligned
translations. We approximate the number of English words
in the pSp corpus to be 954.4k (compare Section III-A).
Figure 3 depicts the development of BLEU score depending
on a successively increased training corpus size in 100k word
increments, using either a training corpus of translations or
our pSp corpus transcribed at a Spanish WER of 16%. The
absolute difference between the BLEU scores of both types of
TMs is higher for smaller training corpus sizes. At a corpus
size of 100k English words, the difference is 15.7 points (a
46.2% relative degradation) and levels out at 500k words to
approximately 10.5 to 11 points (a 24.0% to 26.4% relative
degradation).
Table VI lists the speech translation results on eval07. The
WER on the respective eval07 source text is shown in the
second row. BLEU scores marked with c were achieved using
the constrained Spanish LM. We used the same decoder
weights found via MER optimization on the dev06 verbatim
transcriptions, as we had good experience in the past with this
approach on the very same dev and eval sets. For this reason,
we do not provide speech translation results for dev06. Com-
pared to TMs trained on a similarly sized bilingual text corpus
of translations, we observe a degradation of approximately 8
BLEU points when using pSp-trained TMs. This degradation
in performance is almost 2 BLEU points less than in the case
of MT (compare Table V). In general, the relative degradation
in BLEU for an increased source input word error rate is
smaller for pSp-trained TMs (compare Tables V and VI).

We apply the same ASR systems used for transcribing
the pSp corpus when we automatically transcribe the source
speech of eval07 for speech translation. The smaller degra-
dation in BLEU score indicates that the pSp-trained TMs are
able to compensate source ASR word errors by incorporating
mappings between source word errors and their correct target
translation. This ability to compensate for source word errors
helps to attenuate the loss in speech translation performance
experienced by using SI instead of translation for TM training.

V. CONCLUSION AND FUTURE WORK

We created a MT training corpus from the untranscribed
parallel speech of simultaneous interpreters by automatically
transcribing and aligning source language and target language
speech. This enabled us to build MT systems and speech

translation systems from simultaneous interpretation, thus
eliminating the need for a manually created text corpus of
sentenced aligned translations. We achieve surprisingly strong
translation results with our pSp-trained translation models of
up to 34.3 (31.2) BLEU points for Sp→En (En→Sp) MT and
up to 31.5 (26.1) BLEU points for Sp→En (En→Sp) speech
translation. Our experiments show that training TMs from
pSp is robust towards low transcription performance on one
side of the automatically transcribed speech corpus. Therefore,
we argue that simultaneous interpreter speech can present a
valuable resource for training MT and speech translation in
the context of resource-deficient languages. Furthermore, our
experiments show that in the case of speech translation, pSp-
trained TMs profit from an ability to compensate for word
errors in the source ASR.
We will continue to explore interpretation as a resource for
training MT and speech translation. We plan to expand our
experiments to consecutive interpretation and to additional
language pairs.
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