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Abstract
It is common practice to use similar or even the same fea-

ture extraction methods for automatic speech recognition and
speaker identification. While the front-end for the former re-
quires to preserve phoneme discrimination and to compensate
for speaker differences to some extend, the front-end for the
latter has to preserve the unique characteristics of individual
speakers. It seems, therefore, contradictory to use the same fea-
ture extraction methods for both tasks. Starting out from the
common practice we propose to use warped minimum variance
distortionless response (MVDR) cepstral coefficients, which
have already been demonstrated to perform superior for auto-
matic speech recognition in particular under adverse conditions.
Replacing the widely used mel-frequency cepstral coefficients
by WMVDR cepstral coefficients improves the speaker iden-
tification accuracy by up to 24% relative. We found that the
optimal choice of the model order within the WMVDR frame-
work differs between speech recognition and speaker recogni-
tion, confirming our intuition that the two different tasks indeed
require different feature extraction strategies.

1. Introduction
The performance of speaker identification and recognition sys-
tems has improved dramatically over the past years. The tra-
ditional approaches, such as Gaussian mixture models [1] [2],
have achieved high accuracies on clean speech under well-
matched conditions. Unfortunately, when facing real world
conditions their performance degrades significantly [3] [4]. To
reduce this performance drop we propose to increase the ro-
bustness of the speaker recognition system by extracting more
robust features. The standard feature extraction techniques used
for speaker recognition tasks are based on either Fourier trans-
formation – mel-frequency cepstral coefficients (MFCC) [5] – or
linear prediction – e.g. perceptual linear predictive [6]. How-
ever, they are either

• not robust and therefore perform poorly under adverse
conditions which is the case for MFCC, or are

• ill-suited for the reliable estimation of the spectra of
speech signals, especially for voiced speech, which is
true for all methods using linear prediction envelopes.
They tend to overestimate and overemphasize sparsely
spaced harmonic peaks.

Therefore, we propose to replace the traditionally used
front-ends by a front-end which is based on minimum variance
distortionless response (MVDR) spectral estimation [7]. While
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MVDR spectral estimation overcomes the problems apparent in
linear prediction spectral estimation, warped minimum variance
distortionless response (WMVDR) [8] better suits the spectral
characteristics of human hearing. For automatic speech recog-
nition WMVDR has already been demonstrated to outperform
other features, including their unwarped counterpart, particu-
larly under adverse conditions. In the following speaker recog-
nition experiments we investigate WMVDR spectral estimation
method to extract relevant speaker information.

A detailed overview of the different spectral estimation
methods (such as the Fourier transform, LP, MVDR, and warp-
ing) including their application in various front-ends is pre-
sented in [9]. A brief review and comparison between mel-
frequency and WMVDR cepstral coefficients is given in the
next section. Section 3 presents speaker recognition experi-
ments on clean and noise speech data. Section 4 presents our
conclusion and outlook.

2. Comparison between Mel-Frequency
and Warped MVDR Cepstral Coefficients

In this section we briefly review the properties of mel-frequency
and warped MVDR cepstral coefficients, abbreviated as MFCC
and WMVDRCC respectively. The flowchart of both front-ends
is illustrated in Figure 1. It is easy to see that, to derive WMV-
DRCC, the Fourier transformation including the mel-scale fil-
terbank is replaced by wapred MVDR spectral estimation [8],
while all other steps are identical.
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Figure 1: Flowchart of MFCC and WMVDRCC front-end.
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While the Fourier transformation faithfully represents the
spectral estimate, the MVDR spectral envelope provides an ac-
curate description only for spectral peaks, which are in gene-
ral less distorted by noise in the logarithmic magnitude domain
than spectral valleys. No detailed spectral structure is extracted
at the frequency regions with low signal energy. The influence
of the free parameter, namely the model order which influences
the provided spectral resolution, will be investigated in Sec-
tion 3.1. To account for the non-linear pitch perception cha-
racteristics of the human ear the Fourier transformation is fol-
lowed by a mel-scale filterbank while in the case of WMVDR,
a bilinear-transformation in the time-domain is applied prior to
spectral estimation.

3. Speaker Identification Experiments
The speaker identification experiments described below were
conducted with the Janus Recognition Toolkit (JRTk), which is
developed and maintained jointly at the Universität Karlsruhe
(TH), in Karlsruhe, Germany and at the Carnegie Mellon Uni-
versity in Pittsburgh, Pennsylvania, USA.

Our baseline system is a mixture model-based classifier
with 64 Gaussians, which is trained using K-means clustering
followed by expectation maximization. Each of the two investi-
gated front-ends provided 13 cepstral coefficients every 10 ms.
The cepstral coefficients have been derived from spectral esti-
mates with a frame size of 32 ms which have been obtained by
either the Fourier transformation, or WMVDR spectral estima-
tion. While the Fourier transformation is followed by a mel-
filterbank which reduces the number of spectral bins from 129
to 30, in the case of WMVDR no filterbank is used and thus the
number of spectral bins is not altered. To obtain the cepstral se-
quence a 129x13 cosine transformation matrix is applied to the
spectrum.

To evaluate the performance of the speaker recognition sys-
tem we use accuracy, which is defined as the percentage of cor-
rectly identified test trials.

3.1. Adjusting the Model Order

In our first set of experiments we want to optimize the provided
resolution of the WMVDR spectral estimation by adjusting the
model order to allow for the highest possible speaker identifica-
tion accuracy. The influence of the model order on the spectral
estimate of voiced speech is represented in Figure 2:

• A higher model order shows more detail of the fine struc-
ture of the spectrum and represents the fundamental fre-
quency.

• A low model order reduces the influence of the excita-
tion and is more or less a representation of the transfer
function of the vocal track.

In order to find a good choice for the model order in a
broad number of possible acoustic environments we decided to
evaluate on the far-field speaker identification database (Far-
SID), which provides diverse acoustic environments. FarSID
has been collected at Carnegie Mellon University to investigate
the performance of speaker identification algorithms under ad-
verse conditions [10] [11]. It consists of conversational speech
recorded in face-to-face dialog sessions under two different re-
verberation conditions (small vs. large-sized room). For each
reverberation condition, six noise conditions were applied by
playing interfering signals (music, white noise and speech) at
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Figure 2: Influence of the model order on voiced speech (in the
example the fundamental frequency is at 200 Hz).

different signal-to-noise ratios. The final set includes 10 native
speakers of American English from both genders.

A duration of 60 seconds of speech per speaker is selected
from the FarSID database for training while 30 seconds per
speaker have been chosen for testing. The speaker models are
trained and tested under all noisy conditions and channels sep-
arately. By comparing the overall performance of the speaker
identification system for model orders between 20 and 120 with
a step size of 10, Figure 3, we observe that the accuracy of
the speaker identification system improves with an increase in
model order until a model order of 70 is reached. For higher
model orders, between 70 and 120, no clear trend can be ob-
served.

It is interesting to note that for lower model orders the per-
formance difference is relative high while for higher model or-
ders the performance difference is relative low. This can be
explained by the fact that the influence of the overall spectral
resolution is higher for the same step size in the case of lower
model orders as compared to higher model orders.

Comparing the optimal choice of model order for speech
recognition which is around 301 with the optimal choice for
speaker identification it becomes apparent that for speaker iden-
tification a significant higher model order is required.
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Figure 3: The overall identification accuracy for MFCC and
WMVDRCC using different model orders.

1Note that in those experiments where a high model order is used
for speech recognition, the spectral estimate is followed by a filterbank
which adds additional smoothing.
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3.2. Detailed Analysis for Different Distortion Types

In order to gain more insights of the influence of the various dis-
tortions, the speaker models are trained and tested under each
noisy condition and channel on the FarSID dataset using the
same experimental set-up as described in the previous section.
We use the model order which gave the highest accuracy in the
previous experiment. The graphs in Figure 4 show the identifi-
cation accuracy using MFCC and WMVDRCC respectively. To
provide a better overview of the results each sub-figure shows
the results from training under one noise condition and testing
under different noise conditions.

From this figure, we observe that WMVDRCC based front-
ends improve speaker identification accuracy by up to 24%
relative to MFCC. Its improvement differs for different back-
ground noises. Except for one tested condition, trained on
speech interferred by music at 10 dB and tested on an inter-
fering speaker, in all other conditions (also in clean training and
testing) the WMVDRCC leads to improved speaker recogni-
tion performance. When training on distorted speech data the
WMVDR front-end shows higher improvements in comparison
to models trained on clean speech. In general it can be said that
higher gains can be observed in more difficult conditions (with
low accuracy rates) which underlines once more the robust es-
timation of speech spectra by MVDR spectral envelopes.

3.3. Clean Speech Experiments

The former set of experiments included speech signals which
have been undergone various distortions. In this section we
investigate the performance of the two front-end for clean
speech signals. We decided to evaluate on the naked scientist
shows [12] which have been originally chosen to investigate the
speaker diarization task within the Quaero project. The shows
are recorded in the studio, therefore the recorded speech is quite
clean, approximately 30 dB SNR with low variation for dif-
ferent recordings. To perform speaker identification the total
amount of 48 speakers appearing in the shows had to be re-
duced because each individual speaker time had to be at least
10.5 seconds. The final 31 speakers are from both genders.
In order to obtain more test trials and to get more reliable re-
sults, we divide the whole dataset into 7 subsets, each part con-
tained almost equal speaking time for each of the 31 speakers.
There are at least 1.5 seconds for each speaker per subset. We
then run the experiments by testing on each subset and train-
ing speaker models on the other 6 subsets. The training data
for each speaker includes speech ranging from 9.0 seconds to
3,400 seconds. About 11,900 test trials in total are used for
testing. Each test trial lasts about 1.5 seconds. The result of the
experiments is shown in Table 1.

Cepstral Coefficients Mel-Frequency Warped MVDR

Accuracy 91.01% 91.28%
Relative Improvement – 2.97%

Table 1: Speaker identification accuracy on clean speech by
mel-frequency and warped MVDR cepstral coefficients.

In this experiment on clean speech data, the WMVDR-
based front-end provides 3% relative improvement on identi-
fication accuracy. The proposed use of the WMVDR spectrum
instead of mel-frequency, therefore, does not only provide in-
creased robustness against various kinds of distortions, but also
improves speaker recognition performance in the case of clean
speech.

4. Conclusions and Outlook
In this paper it has been proposed to replace the widely used
mel-frequency cepstral coefficients by warped minimum vari-
ance distortionless response cepstral coefficients for speaker
identification. We found that the latter is not only superior in au-
tomatic speech recognition (as for example reported in [8]), but
also superior in speaker recognition. In particular the WMVDR
is capable to improve the performance on speaker recognition
under adverse conditions due to its more robust extraction of re-
levant acoustic information. While a lower model order (around
30) is better for automatic speech recognition, a higher model
order (above 70) is leading to an improved speaker identifica-
tion accuracy. This result suggests that different feature ex-
traction strategies should be considered for speech and speaker
recognition. In the case of speech recognition the fundamen-
tal frequency should be suppressed (for non-tonal languages)
while it seems helpful to preserve at least some information of
the fundamental frequency for speaker recognition.

Further work will be separated into two research areas:
speech feature extraction and speech feature enhancement.
While for the former we try to further improve the extracted
features by front-ends particularly designed for speaker iden-
tification, for the latter we want to adapt feature enhancement
techniques which have already been developed for automatic
speech recognition, e.g. the joint compensation of noise and
reverberation as proposed in [13].
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Figure 4: Identification accuracy for MFCC and WMVDRCC front-ends in various acoustic environments.
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