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Abstract

Cohesive constraints allow the phrase-based decoder
to employ arbitrary, non-syntactic phrases, and en-
courage it to translate those phrases in an order
that respects the source dependency tree structure.
We present extensions of the cohesive constraints,
such as exhaustive interruption count and rich in-
terruption check. Furthermore, we present anal-
yses related to the impact of cohesive constraints
across language pairs with different reordering mod-
els and dependency parsers. Our experiments show
that the cohesion-enhanced decoder performs statis-
tically significant better than the standard phrase-
based decoder on English—Spanish. Improve-
ments between 0.4 and 1.8 BLEU point are also
obtained on English—Iraqi, Arabic—English and
Chinese—English systems.

1 Introduction

Word movement is a defining characteristic of the ma-
chine translation problem. The fact that word order can
change during translation makes the problem fundamen-
tally different from related tasks such as tagging and
automatic-speech-recognition. In fact, if one allows un-
restricted changes in word order during translation, that
alone is sufficient to show it to be NP complete, by anal-
ogy to the Traveling Salesman Problem (Knight, 1999).
Despite the importance of movement, the popular phrase-
based translation paradigm (Koehn et al., 2003) devotes
surprisingly little modeling capacity to the issue. A very
simple reordering model is to base the cost for word
movement only the distance in the source sentence be-
tween the previous and the current word or phrase during
the translation process. More recently, data-driven mod-
els, which condition the probability of phrase-to-phrase
transitions on the words involved, have been proposed to
address this issue (Tillman, 2004; Koehn et al., 2005; Al-
Onaizan and Papineni, 2006; Kuhn et al., 2006; Galley
and Manning, 2008).

Alternatively, one can employ syntax in the modeling
of movement. By viewing language in terms of its hierar-
chical structure, one can more easily expose regularities
in the sorts of movement that occur during translation.
A number of syntactic methods are driven by formal syn-
tax alone (Wu, 1997; Chiang, 2005), while others employ
linguistic syntax derived from a parse tree (Galley et al.,
2004; Quirk et al., 2005). Each of these approaches re-
quires a parser-like decoder, and represents a departure
from phrase-based decoding.

The well-studied phrase-based architecture can also
benefit from syntactic intuitions. Phrasal decoding can
be augmented easily, either by syntactic pre-processing
or through search-space constraints. Pre-processing ap-
proaches parse the source sentence and use the tree to
apply rules which re-order the source into a more target-
like structure before the translation begins. These rules
can be learned (Xia and McCord, 2004) or designed by
hand (Collins et al., 2005; Wang et al., 2007). The
pre-processing approach benefits from its simplicity and
modularity, but it suffers from providing at most a one-
best guess at syntactic movement. Search-space con-
straints limit the phrasal decoder’s translation search us-
ing syntactic intuitions. Zens et al.(2004) demonstrated
how to incorporate formally syntactic binary-bracketing
constraints into phrase-based decoding. Recently, it has
been shown that syntactic cohesion, the notion that syn-
tactic phrases in the source sentence tend to remain con-
tiguous in the target (Fox, 2002), can be incorporated into
phrasal decoding as well, by following the simple intu-
ition that any source subtree that has begun translation,
must be completed before translating another part of the
tree (Cherry, 2008; Yamamoto et al., 2008).

In this paper, we explore this approach, cohesive
phrasal decoding, focusing on empirical issues left un-
explored by previous investigations. Cherry (2008) pro-
posed the notion of a soft cohesion constraint, where de-
tected violations are allowed during decoding, but incur



ROOT

ROQOT-S

begins VBZ/8

/;J \OBJ

election NN/3

/;oo MOD “\\_NMOD

theDT/1 presidential JJ/2 states NNS/7

/M'OD NMOD \ NMOD

of IN/4 the DT/5 united VBN/6

tomorrow NN/9

Figure 1: Example of an English source-side dependency tree
structure for the sentence “the presidential election of the united
states begins tomorrow”.

a penalty. The flexibility of a soft penalty is appealing,
given that cohesion does not perfectly characterize trans-
lation movement (Fox, 2002). But while cohesive decod-
ing is well-defined for a hard constraint, soft constraints
leave room for several design decisions. Should penal-
ties persist as long as violations remain unresolved? Are
some violations worse than others? Do cohesive con-
straints also improve systems that already benefit from
large language models or lexical re-ordering models? We
investigate these questions with a number of variant cohe-
sive constraints. Furthermore, experimental results have
so far been reported for English, French and Japanese
only. We add to this body of work substantially, by ex-
perimenting with Spanish, Chinese, Iraqi and Arabic. Fi-
nally, we investigate the impact of the choice of parser
and parse quality on cohesive decoding.

2 Cohesion Constraints

Phrase-based machine translation is driven by a phrasal
translation model, which relates phrases (contiguous seg-
ments of words) in the source to phrases in the tar-
get. This translation model can be derived from a word-
aligned bitext. Translation candidates are scored accord-
ing to a linear model combining several informative fea-
ture functions. Crucially, the decoder incorporates trans-
lation model scores and n-gram language model scores.
The component features are weighted to minimize a
translation error criterion on a development set (Och,
2003). Decoding the source sentence takes the form of
a beam search through the translation space, with inter-
mediate states corresponding to partial translations. The
decoding process advances by extending a state with the

Algorithm 1 Interruption Check (Cohl) (Cherry, 2008)

Input: Source tree 7', previous phrase fh, current
phrase fr11, coverage vector C},

. Interruption < False

: Chr = Cr UG5 € frer} B

. F' «— the left and right-most tokens of fj,

. for eachof f € F do

Climb the dependency tree from f until you reach
the highest node n such that fj, 1, ¢ T'(n).

6:  if n exists and T'(n) is not covered in Cj,41 then
7: Interruption «— True
8

9
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end if
. end for
. Return Interruption
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translation of a source phrase, until each source word has
been translated exactly once. Re-ordering occurs when
the source phrase to be translated does not immediately
follow the previously translated phrase. This is penalized
with a discriminatively-trained distortion penalty. In or-
der to calculate the current translation score, each state
can be represented by a triple:

e A coverage vector C' indicates which source words
have already been translated.

e A span f indicates the last source phrase translated
to create this state.

o A target word sequence stores context needed by the
target language model.

As cohesion concerns only movement in the source sen-
tence, we can completely ignore the language model con-
text in our description of the different cohesion con-
straints, i.e. we will show the decoder state only as a
(f,C) tuple.

To enforce cohesion during the state expansion pro-
cess, cohesive phrasal decoding has been proposed in
(Cherry, 2008; Yamamoto et al., 2008). The cohesion-
enhanced decoder enforces the following constraint: once
the decoder begins translating any part of a source sub-
tree, it must cover all the words under that subtree be-
fore it can translate anything outside of it. This notion
can be applied to any projective tree structure, but we
follow Cherry (2008) and use dependency trees, which
have been shown to demonstrate greater cross-lingual co-
hesion than other structures (Fox, 2002). We use a tree
data structure to store the dependency tree. Each node in
the tree contains surface word form, word position, parent
position, dependency type and POS tag. An example of
the dependency tree data structure is shown in Figure 1.
We use T to stand for our dependency tree, and 7'(n) to
stand for the subtree rooted at node n. Each subtree T'(n)
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Figure 2: A candidate translation where Algorithm 1 does not
fire

Algorithm 2 Exhaustive Interruption Check (Coh2)

Input: Source tree T', previous phrase f5, current
phrase fr1, coverage vector C},

Interruption «— False
Chy1=CrU{jlfj € fri1}
Fe {fICu(f) = 1}
for eachof f € F' do
Climb the dependency tree from f until you reach
the highest node n such that fi, 1, ¢ T'(n).
if n exists and T'(n) is not covered in C, 41 then
Interruption < True
end if
end for
10: Return Interruption
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covers a span of contiguous source words; for subspan f
covered by T'(n), we say f € T(n).

Cohesion is checked as we extend a state (fy,,C})
with the translation of f,,1, creating a new state
(frna1,Cry1). Algorithm 1 presents the cohesion check
described by Cherry (2008). Line 3 selects focal points,
based on the last translated phrase. Line 5 climbs from
each focal point to find the largest subtree that needs to be
completed before the translation process can move else-
where in the tree. Line 6 checks each such subtree for
completion. Since there are a constant number of fo-
cal points (always 2) and the tree climb and completion
checks are both linear in the size of the source, the entire
check can be shown to take linear time.

The selection of only two focal points is motivated by
a “violation free” assumption. If one assumes that the
translation represented by (fx, Cj,) contains no cohesion
violations, then checking only the end-points of f}, is suf-
ficient to maintain cohesion. However, once a soft cohe-
sion constraint has been implemented, this assumption no
longer holds.

2.1 Exhaustive Interruption Check (Coh2)

Because of the “violation free” assumption, Algo-
rithm 1 implements the design decision to only suffer a
violation penalty once, when cohesion is initially bro-
ken. However, this is not necessarily the best approach,

Algorithm 3 Interruption Count (Coh3)

Input: Source tree 7', previous phrase fh, current
phrase f; 1, coverage vector C},

: ICount «— 0

: Chr = Cr UG5 € frer} B

. F' «— the left and right-most tokens of fj,

. for eachof f € F do

Climb the dependency tree from f until you reach
the highest node n such that fj, 1, ¢ T'(n).

6: if n exists then

7: for eachof e € T'(n) and Cp41(e) =0 do
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ICount = ICount + 1
end for
end if
11: end for
: Return ICount
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as the decoder does not receive any further incentive to
return to the partially translated subtree and complete it.
For example, Figure 2 illustrates a translation candidate
of the English sentence “the presidential election of the
united states begins tomorrow” into French. We consider
f1 = “begins”, f5 = “tomorrow”. The decoder already
translated “the presidential election” making the cover-
age vector C5=“11100001 1”. Algorithm 1 tells the
decoder that no violation has been made by translating
“tomorrow” while the decoder should be informed that
there exists an outstanding violation. Algorithm 1 found
the violation when the decoder previously jumped from
“presidential” to “begins”, and will not find another vio-
lation when it jumps from “begins” to “tomorrow”.
Algorithm 2 is a modification of Algorithm 1, chang-
ing only line 3. The resulting system checks all previ-
ously covered tokens, instead of only the left and right-
most tokens of f},, and therefore makes no violation-free
assumption. For the example above, Algorithm 2 will in-
form the decoder that translating “tomorrow” also incurs
a violation. Because |F| is no longer constant, the time
complexity of Coh2 is worse than Cohl. However, we
can speed up the interruption check algorithm by hash-
ing cohesion checks, so we only need to run Algorithm 2

once per ( fu41,Chi1) -

2.2 Interruption Count (Coh3) and Exhaustive
Interruption Count (Coh4)

Algorithm 1 and 2 described above interpret an inter-
ruption as a binary event. As it is possible to leave several
words untranslated with a single jump, some interrup-
tions may be worse than others. To implement this obser-
vation, an interruption count is used to assign a penalty
to cohesion violations, based on the number of words left
uncovered in the interrupted subtree. For the example in
Section 2.1, Algorithm 4 will return 4 for 1Count (“of”;



Algorithm 4 Exhaustive Interruption Count (Coh4)

Algorithm 5 Rich Interruption Constraints (Coh5)

Input: Source tree 7T, previous phrase f;, current

phrase fj1, coverage vector C},

ICount «— 0

Che1=CrU{jlfj € frns1}

F—{f|ICn(f) =1}

for eachof f € F' do
Climb the dependency tree from f until you reach
the highest node n such that fj, 1 ¢ T'(n).

6: if n exists then

7: for eachof e € T'(n) and Cp41(e) =0 do

8
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ICount = ICount + 1
: end for
10:  end if
11: end for
12: Return ICount

“the”; “united”; “states”). The modification of Algorithm
1 and 2 lead to Interruption Count (Coh3) and Exhaustive
Interruption Count (Coh4) algorithms, respectively. The
changes only happen in lines 1, 6 and 7. We use an ad-
ditional bit vector to make sure that if a node has been
reached once, it is not counted again during the same in-
terruption check.

2.3 Rich Interruption Constraints (Coh5)

The cohesion constraints in Sections 2.1 and 2.2 do not
leverage node information in the dependency tree struc-
tures. We propose the rich interruption constraints (Coh5)
algorithm to combine four constraints which are Interrup-
tion, Interruption Count, Verb Count and Noun Count.
The first two constraints are identical to what was de-
scribed above. Verb and Noun count constraints are en-
forcing the following rule: a cohesion violation will be
penalized more in terms of the number of verb and noun
words that have not been covered. For example, we want
to translate the English sentence “the presidential elec-
tion of the united states begins tomorrow” to French with
the dependency structure as in Figure 1. We consider f},
= “the united states”, f; 1 = “begins”. The coverage bit
vector Cp,+1 180000111107 Algorithm 5 will re-
turn true for Interruption, 4 for ICount (“the”; “pres-
idential”; “election”; “of”), 0 for VerbCount and 1 for
NounCount (“election”).

3 Experiments

We built baseline systems using GIZA++ (Och and
Ney, 2003), Moses’ phrase extraction with the grow-
diag-final-end heuristic (Koehn et al., 2007), a stan-
dard phrase-based decoder (Vogel, 2003), the SRI LM
toolkit (Stolcke, 2002), the suffix-array language model
(Zhang and Vogel, 2005), a distance-based word reorder-

Input: Source tree 7', previous phrase fh, current

phrase f}, 1, coverage vector Cj,

1: Interruption < False

2. ICount «— 0

3: VerbCount «— 0

4: NounCount <« 0

50 Cpgr = Cp U{JIf; € fas1} _

6: F' « the left and right-most tokens of fj,

7: for eachof f € F' do

8:  Climb the dependency tree from f until you reach
the highest node n such that fj, 1 ¢ T'(n).

9:  if n exists then

10: for each of e € T'(n) and Cp41(e) =0 do

11: Interruption «— True

12: ICount = ICount + 1

13: if POS of e is “VB” then

14: VerbCount «— VerbCount + 1

15: else if POS of ¢ is “NN” then

16: NounCount < NounCount + 1

17: end if

18: end for

19:  end if

20: end for

21: Return Interruption, ICount, VerbCount,
NounCount

ing model with a window of 3, and the maximum number
of target phrases restricted to 10. Results are reported
using lowercase BLEU (Papineni et al., 2002) and TER
(Snover et al., 2006). All model weights were trained
on development sets via minimum-error rate training
(MERT) (Venupopal and Vogel, 2005) with 200 unique
n-best lists and optimizing toward BLEU. To shorten the
training time, a multi-threaded GIZA++ version was used
to utilize multi-processor servers (Gao and Vogel, 2008).
We used the MALT parser (Nivre et al., 2006)! to ob-
tain source English dependency trees and the Stanford
parser for Arabic and Chinese (Marneffe et al., 2006).
In order to decide whether the translation output of one
MT engine is significantly better than another one, we
used the bootstrap method (Zhang et al., 2004) with
1000 samples (p < 0.05). We perform experiments on
English—Iraqi, English—Spanish, Arabic—English and
Chinese—English. Detailed corpus statistics are shown
in Table 1. Table 2 shows results in lowercase BLEU
and TER; bold type is used to indicate highest scores.
An italic text indicates the score is statistically significant
better than the baseline.

The first step in validating the proposed approach was

'We would like to thank Johan Hall and Joakim Nirve for helpful
suggestions on training and using the English dependency model



English—Iraqi English— Spanish Arabic—English Chinese—English
English | Iraqi English | Spanish || Arabic | English || Chinese [ English
sentence pairs 654,556 1,310,127 5,359,543 10,964,230
unique sent. pairs 510,314 1,287,016 5,111,961 9,041,423
avg. sentence length 8.4 59 27.4 28.6 25.7 29.7 249 28.1
# words 55M | 38M || 358M | 374M 138M | 159M || 272.5M | 3082 M
vocabulary 34K 109 K 117K 173 K 690 K 364K 14 M 845 K

Table 1: Corpus statistics of English—Iraqi, English—Spanish, Arabic—English and Chinese— English systems

English—Iraqi || English—Spanish Arabic—English Chinese—English
june08 nct07 mt08-nw mt08-wb dev07-nw dev07-wb

BLEU | TER || BLEU TER BLEU | TER | BLEU | TER || BLEU | TER | BLEU | TER
Baseline | 23.58 | 61.03 || 32.04 49.97 48.53 | 45.03 | 33.77 | 56.30 || 25.14 | 62.32 | 23.65 | 61.66
+Cohl 2445 | 58.89 || 32.72 49.18 48.78 | 4492 | 34.15 | 56.01 || 26.46 | 61.04 | 2395 | 61.05
+Coh2 24.73 | 58.75 || 32.81 49.02 48.47 | 4523 | 3420 | 5642 || 26.92 | 61.24 | 2392 | 61.45
+Coh3 24.19 | 59.25 || 32.87 48.88 48.70 | 44.84 | 3391 | 56.29 263 | 61.46 | 24.19 | 61.51
+Coh4 24.66 | 58.68 || 33.20 48.42 48.85 | 44.73 | 3386 | 56.38 || 26.73 | 60.94 | 24.03 | 61.42
+Coh5 2442 | 59.05 || 33.27 48.09 48.57 | 45.07 | 34.10 | 56.37 || 26.05 | 61.69 | 23.76 | 61.52

Table 2: Scores on held-out evaluation sets of baseline and cohesion-enhanced systems for English—Iraqi, English— Spanish,

Arabic—English and Chinese—English language pairs

to check if it works for the other language pairs. Our
English-Iraqi data come from the DARPA TransTac pro-
gram. The target domain is force protection which in-
cludes checkpoints and house-hold searches, and extends
to civil affairs, medical, and training dialogs.

We used TransTac T2T July 2007 (julyO7) as the de-
velopment set and TransTac T2T June 2008 (juneO8) as
the held-out evaluation set. Each test set has 4 reference
translation. We applied the suffix-array LM up to 6-gram
with Good-Turing smoothing. In Table 2, cohesive con-
straints produced improvements ranging between 0.5 and
1.2 BLEU point on the held-out evaluation set.

We have shown that the proposed cohesion-enhanced
decoder outperformed the baseline English—Iraqi sys-
tems. The English—Iraqi system used a small train-
ing size and came from force protection domain. The
English—Iraqi pair also differs according to the language
family. English is an Indo-European language while Iraqi
is a Semitic language of the Afro-Asiatic language fam-
ily. The next step in validating the proposed approach
was to test on a language pair comes from the same Indo-
European language family with a medium training size,
different domain and written style.

We used the Europarl and News-Commentary parallel
corpora for English—Spanish as provided in the ACL-
WMT 2008? shared task evaluation. Detailed corpus
statistics are given in Table 1. We built the baseline sys-
tem using the parallel corpus restricting sentence length
to 100 words for word alignment and a 4-gram SRI

Zhttp://www.statmt.org/wmt08

LM with modified Kneyser-Ney smoothing. We used
nc-devtest2007(ncd07) as the development set and nc-
test2007 (nct07) as the held-out evaluation set. Each test
set has 1 translation reference. Table 2 shows that we ob-
tained improvements ranging between 0.7 and 1.2 BLEU.
All cohesive constraints perform statistically significant
better than the baseline on the held-out evaluation set.

The previous results indicate that cohesive constraints
contribute to the improvements of translation systems
from English to other languages. However, many of to-
day’s high-profile translation tasks are concerned with
translation into English. We experiment with the GALE
data to test this other direction, and to examine cohe-
sion’s effect on competition-grade systems, which in-
clude other powerful movement features, such as large
language models.

To validate these questions we present experimen-
tal results for the large-scale Arabic—English and
Chinese—English systems. Unlike previous experi-
ments, the source languages are Arabic and Chinese. Our
Arabic-English and Chinese-English data come from the
DARPA GALE program?® and belong to newswire and
broadcast news domain. Detailed corpus statistics are
shown in Table 1. A 5-gram SRI LM was trained from
the English Gigaword Corpus V3, which contains several
newspapers for the years between 1994 and 2006. We
also included the English side of the bilingual training
data, resulting in a total of 2.7 billion running words after
tokenization. For Arabic—English system we used NIST

3This training data was used in GALE P3 Evaluation



MT-06 as the development set and NIST MT-08 NW
(mt08-nw) and WB (mtO8-wb) as held-out evaluation
sets. For Chinese—English system we used NIST MT-05
as the development set and Dev07Blind NW (dev07-nw)
and WB (dev07-wb)* as held-out evaluation sets. Each
test set has 4 reference translation. Table 2 shows results
in BLEU and TER. The best improvements in BLEU we
obtained are 0.3 on MT-08 NW and 0.4 on MT-08 WB for
Arabic-English. We obtained 1.8 BLEU on Dev(07Blind
NW and 0.5 on Dev0O7Blind WB for Chinese-English
over the baseline. Coh2 performed statistically signifi-
cant better than the baseline system on DevO7Blind NW.

4 Discussion and Analysis

Experimental results of cohesive constraints on different
language pairs have been described in Section 3, in this
section we vary the ordering capability of the baseline
system, and perform other forms of error analysis.

4.1 Interactions with reordering models

We first investigate the interactions of cohesive contraints
with lexicalized reordering models on the performance of
the translation system. The question we are trying to an-
swer is whether the improvements of cohesive constraints
are subsumed by a strong reordering model. Koehn et
al.  (2005) proposed the lexicalized reordering model
which conditions reordering probabilities on the word of
each phrase pair. The lexicalized reordering model has
shown substantial improvements over the distance-based
reordering model.

dev07-nw dev07-wb

BLEU | TER | BLEU | TER
Baseline 25.14 | 62.32 | 23.65 | 61.66
+Lex 26.07 | 61.56 | 23.68 | 61.71
+Lex+Cohl | 26.52 | 62.00 | 24.47 | 61.69
+Lex+Coh2 | 26.62 | 60.71 | 2495 | 60.33
+Lex+Coh3 | 26.53 | 61.62 | 25.04 | 61.06
+Lex+Coh4 | 26.53 | 60.86 | 24.79 | 60.69
+Lex+Coh5 | 26.35 | 60.74 | 24.88 | 60.44

Table 3: Performances of the GALE Chinese—English sys-
tem with lexicalized reordering models in comparison with
cohesion-enhanced systems

Table 3 shows the performance of Chinese—English
system on the held-out evaluation set when we include
lexicalized reordering models and cohesive constraints
in the baseline system with a distance-based reordering
model’. The system with lexicalized reordering model
+lex gained over the baseline system by 0.9 BLEU point
on devO7-nw set and performed similar on devQ7-wb set.

4This test set is distributed by the GALE Rosetta team
5Note that we ran MERT separately for each system

However, the performance of +lex is still weaker than
most cohesive constraints in Table 2. Furthermore, when
cohesive constraints are added on top of the lexicalized
reordering model we observed a gain by 0.5 BLEU point
on dev07-nw and a substantial gain by 1.4 BLEU on
dev07-wb set. Coh2 model obtained best scores in most
cases.

dev07-nw dev07-wb

BLEU | TER | BLEU | TER
Baseline 25.14 | 62.32 | 23.65 | 61.66
+Lex 26.07 | 61.56 | 23.68 | 61.71
+Lex+w5 2621 | 61.06 | 24.87 | 60.84
+Lex+w5+Cohl | 26.92 | 60.30 | 25.27 | 60.81
+Lex+w5+Coh2 | 27.13 | 60.21 | 25.12 | 60.95
+Lex+w5+Coh3 | 27.09 | 60.76 | 25.10 | 60.79
+Lex+w5+Coh4 | 26.79 | 60.50 | 25.37 | 60.48
+Lex+w5+Coh5 | 26.87 | 61.04 | 25.06 | 61.03

Table 4: Performances of the GALE Chinese—English system
with lexicalized reordering models and reordering window 5 in
comparison with cohesion-enhanced systems

After having empirical evidence for the improvements
of cohesive constraints over systems with lexicalized re-
ordering models, we insvetigate the impact of the re-
ordering window. Table 4 demonstrates the translation
performances of systems with different reordering lim-
its and reordering models. The baseline system used
distance-based reordering model with reordering window
of 3. Meanwhile, +/ex and +/ex+w5 used lexicalized re-
ordering models with reordering window of 3 and 5, re-
spectively. +lex+w5 gained over the +/ex system by 0.1
BLEU point on devO7-nw and 1.1 BLEU on dev07-wb.
However, +lex+wS is still weaker than +lex+Coh2 sys-
tem in Table 3. We add cohesive constraints on top of
+lex+w5. Cohesion-enhanced systems performed better
than +lex+w5 by 0.9 BLEU on devO7-nw and 0.5 BLEU
point on dev07-wb.

4.2 The decoder behaviors

The cohesive constraints essentially act as filters on the
generated hypotheses. As longer phrases can induce
more cohesion violations, it is interesting to see how big
an effect the different cohesive constraints have on the
selection of phrases used in the final first best translation.
The average length of phrases used in the translations is
shown in Table 5. We see that indeed the cohesion con-
straints bias toward using shorter phrases.

We also analyzed how often a cohesion violation
actually occurs under the different versions. Triple
(fis fne1, Cry1) can either trigger a cohesion violation
or signal no violation independent of the actual transla-
tion generated. Therefore, we count the number of differ-
ent triples and how many of them led to a cohesion vio-



june-08 | nc-test2007 | mtO8-NW | mt0O8-WB
Baseline 2.3 2.01 1.88 1.54
+Cohl 2.26 1.89 1.81 1.50
+Coh2 224 1.92 1.89 1.56
+Coh3 2.26 1.97 1.88 1.54
+Coh4 2.13 2.01 1.87 1.53
+Coh5 2.16 1.89 1.82 1.52

Table 5: The average length of phrases used in the translations

june-08 | nc-test2007 | mtO8-NW | mt08-WB
+Cohl | 0.3896 0.4001 0.4786 0.4412
+Coh2 | 0.4305 0.4547 0.5198 0.4789
+Coh3 | 0.3887 0.3974 0.4777 0.4404
+Coh4 | 0.4304 0.4546 0.5198 0.4790
+Coh5 | 0.3916 0.4003 0.4852 0.4469

Table 6: Ratios between the number of times the interruption
check fires and the total number of interruptions check in the
different variants

lation. Results are summarized in Table 6. As expected,
since Coh 2 and 4 perform exhaustive interruption checks
they have higher ratio than the others. The ratios of Coh
1, 3 and 5 are close but not exactly the same because of
hypothesis recombination and pruning during the decod-
ing process. This is also true for the Coh 2 and 4.

4.3 The role of dependency parser

We analyze the influence of the dependency parser on
the performance of the translation system. We experi-
mented with the MALT parser and the Stanford parser
with default parameters on the English—Iraqi system de-
scribed in Section 3. Performances on the unseen test
set are shown in Table 7. Experimental results show that
1) either using MALT or Stanford parser the proposed
approaches still outperform the baseline; 2) the MALT
parser has a tendency to give better BLEU scores than
the Stanford parser whereas the Stanford parser is faster
than the MALT parser in our experimental setup.

MALT Parser Stanford Parser

BLEU | TER | BLEU | TER

Baseline | 23.58 | 61.03 | 23.58 | 61.03
+ Cohl 24.45 | 58.89 | 24.17 | 58.79
+ Coh2 2473 | 58.75 | 24.12 | 58.83
+ Coh3 24.19 | 59.25 | 24.37 | 58.81
+ Coh4 24.66 | 58.68 | 24.44 | 58.71
+ Coh5 2442 | 59.05 | 23.99 | 59.55

Table 7: Comparison between using MALT parser and Stanford
parser on English—Iraqi system

A general question of what quality of parser is required
for cohesive constraints to work is important (Quirk and

ROOT /ROOT \ NMOD ROOT

friend NN/3

no DT/1 ‘ ‘my.llz‘

the DT/7 ‘

completely RB/5 | | understand VBP/6 | | situation NN/§ ‘

completely RB/5 | | understand VBP/6

the DT/7 ‘

1) no my friend i completely understand the situation N
M Y pretely (1) no my friend i completely understand the situation

(a) M1 (b) M2

Figure 3: Dependency trees produced by M1 and M2.

Corston-Oliver, 2006). To answer this question, we
trained two MALT parser models, M1 and M2, on dif-
ferent sizes of Penn Treebank V3 data. The perfor-
mances in term of unlabeled attachment score on the
CoNLL-07 dependency test set are 19.41% and 86.21%
for M1 and M2, respectively. Figure 3 illustrates dif-
ference dependency tree structures produced by M1 and
M2 models. Table 8 shows the comparison of using M1
and M2 for English—Iraqi and English—Spanish sys-
tems. The results show that when applying these models
to English—Iraqi, M1 performs better than M2 in most
cases except Coh4. However, when the models are ap-
plied to English-Spanish then M2 is better than M1 in
most cases except Coh2. The reason is that M1 and M2
models were only trained on Penn Treebank which be-
longs to newswire domain. M2’s high performance on
the newswire data has a positive effect on the Spanish
test set, which is also drawn from a newswire domain.
Meanwhile, the Iraqi defense text, which is quite differ-
ent from newswire, seems to have no stable correlation
with (newswire) parse quality, with M1 helping in some
versions of the cohesion constraint, and M2 helping in
others.

English—Iraqi | English—Spanish
Ml M2 Ml M2
Baseline | 23.58 | 23.58 | 32.04 32.04
+ Cohl 24.16 | 23.86 | 31.92 32.29
+Coh2 | 24.32 | 24.30 | 32.40 32.30
+Coh3 | 24.23 | 24.06 | 31.89 32.60
+Coh4 | 23.86 | 24.54 | 3243 32.81
+Coh5 | 2426 | 24.22 | 32.53 33.00

Table 8: The impact of parser quality on the performance of
English—Iraqi and English— Spanish systems in BLEU score

5 Conclusions and Future Work

In this paper, we explored cohesive phrasal decoding,
focusing on variants of cohesive constraints. We pro-



posed four novel cohesive constraints namely exhaustive
interruption check (Coh2), interruption count (Coh3),
exhaustive interruption count (Coh4) and rich interrup-
tion constraints (Coh5). Our experimental results show
that with cohesive constraints the system generates better
translations in comparison with strong baselines. To en-
sure the robustness and effectiveness of the proposed ap-
proaches, we conducted experiments on 4 different lan-
guage pairs, namely English—Iraqi, English—Spanish,
Arabic—English and Chinese—English. These experi-
ments also covered a wide range of training corpus sizes,
ranging from 500K sentence pairs up to 10 million sen-
tence pairs. Furthermore, the effectiveness of our pro-
posed methods was shown when we applied them to sys-
tems using a 2.7 billion words 5-gram LM, different re-
ordering models and dependency parsers. All five ap-
proaches give positive results. While the improvements
are not statistically significant at the 95% level in most
cases, there is nonetheless a consistent pattern indicating
that the observed improvements are stable. The most re-
liable approach seems to be Coh2, a solution which does
not make the violation free assumption.

In future work, we plan to apply cohesion constraints
to learn reordering models. The cohesion constraints tell
the decoder which cohesive movements are available, but
the decoder has no opinion on how likely those moves
are. A normal lexical reordering model is defined in
terms of transitions between two phrases in sequence,
previous and next, which have a specific relationship to
each other, such as monotone, swap, or discontinuous.
Statistics on those relationships make up the lexical re-
ordering model. The cohesion constraints, as described in
this paper, can also be considered in terms of previous
and next. One can think of the check as checking the
largest source subtree the decoder is leaving by transition-
ing from previous source to next source. Furthermore,
linguistic analysis, such as root form, affixes, dependency
types, and so on, can be used to define new cohesion con-
straints.
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