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ABSTRACT
In recent years, the field of automatic speaker identification

has begun to exploit high-level sources of speaker-discriminative
information, in addition to traditional models of spectral shape.
These sources include pronunciation models, prosodic dynamics,
pitch, pause, and duration features, phone streams, and conversa-
tional interaction. As part of this broader thrust, we explore a new
frame-level vector representation of the instantaneous change in
fundamental frequency, known as fundamental frequency variation
(FFV). The FFV spectrum consists of 7 continuous coefficients,
and can be directly modeled in a standard Gaussian mixture model
(GMM) framework. Our experiments indicate that FFV features
contain useful information for discriminating among speakers, and
that model-space combination of FFV and cepstral features outper-
forms cepstral features alone. In particular, our results on 16kHz
Wall Street Journal data show relative reductions in error rate of
54% and 40% for female and male speakers, respectively.

Index Terms— Speaker identification, Intonation, Fundamental
frequency.

1. INTRODUCTION

Automatic speaker identification (SID) is the inference by machine
of speaker identity, given a recorded utterance. The task has tradi-
tionally relied on the extraction of low-level spectral features, such
as those in automatic speech recognition, and maximum likelihood
classification using continuous density models. More recently, SID
systems have been augmented with high-level features in an effort
to exploit what is known about speaker identification by humans [1].
This includes prosodic features and, in particular, features descrip-
tive of fundamental frequency (F0) and its variation.

F0 features have been applied to the SID task in one of three
main ways. Most commonly, global utterance-level statistics, such
as mean and standard deviation, are estimated and compared be-
tween two utterances [2]. However, such statistics do not capture
the shape of the F0 trajectory in time, a limitation which has been
addressed in part through the inclusion of dynamic features in the
feature vector [3]. A second approach to modeling F0 for SID aims
to explicitly represent the F0 trajectory in time. Pitch contours be-
tween any two renderings of the same lexical content can be com-
pared using dynamic time warping [4]. This approach is limited
to text-dependent speaker recognition applications. Its extension to
text-independent applications [5], comprising the third approach we
mention, relies on the availability of a speech recognition system
and requires a considerable amount of training data. In theory, when
these requirements are met, the approach allows for the inference of
conditional F0 feature densities, given other features such as energy
trajectories or specific lexical contexts.

In this paper, we apply to the problem of speaker identification
a frame-level vector representation of the instantaneous change in
F0, known as the fundamental frequency variation (FFV) spectrum
[6] introduced in [7]. Unlike F0, the FFV spectrum remains well-
defined in the absence of voicing, and eliminates the need to localize
a unique peak corresponding to the fundamental frequency, a pro-
cess which is prone to error. The experiments we present suggest
that these properties of the FFV spectrum recommend it for standard
Gaussian mixture modeling (GMM). We successfully show that, for
speaker identification, FFV information is complementary to that in
standard frame-level Mel-frequency cepstral coefficients (MFCCs).
Model-based combination with a GMM-FFV system reduces the
classification error rate of our baseline GMM-MFCC system by 40-
54%. We note also that the current work is the first attempt to com-
pute the FFV spectrum for a discriminative task using recordings
made outside of the anechoic chamber.

The paper is organized as follows. Section 2 introduces the FFV
representation, provides details necessary for its computation, and
outlines how that computation differs from what has been described
in the literature for a different discriminative task [8]. In Section 3,
we present the baseline GMM-MFCC SID system and in Section 4
describe the datasets used in this work. Experiments quantifying the
performance of the baseline and that of the incremental gain from
FFV features are presented in Sections 5 and 6, respectively. We
conclude in Section 7 with a summary of our findings and suggest
several avenues for future work.

2. FUNDAMENTAL FREQUENCY VARIATION

The FFV coefficients are computed from a single frame of audio,
much like the Mel-frequency cepstrum. The computation is detailed
in [7, 6, 8]; here, we provide only a brief account:

1. Compute a 512-point FFT over the left half of the analysis
frame, and similarly for the right half of the analysis frame
(henceforth FL and FR, respectively); FFTs are computed
using two 20ms-wide Hann windows whose peaks are tsep =
0.012 seconds apart, as shown in Figure 1.

2. Compute the vanishing point product of |FL| and |FR|, by
dilating one or the other spectrum by a factor 2ρ, for 512 dis-
crete values of ρ, to yield the FFV spectrum
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Fig. 1. Window functions used to produce estimates of FL and FR,
the frequency spectra of the left and right halves of each 32ms anal-
ysis frame (512 points at a sampling frequency of 16 kHz), respec-
tively. x-axis coordinates are in ms.
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The values ρ governing the dilation factor are given by their
discrete counterparts r ∈ [−256, 255], via

ρ =
4r

N
·

tsep

tref
sep

, (4)

where N≡512. tref
sep≡0.008 s is the original value for the

inter-peak spacing in Figure 1, taken from [7].
3. Compress the FFV spectrum using a 7-filter filterbank, as de-
scribed in [6]; the design of the filters is perceptually moti-
vated and a function of tref

sep , with one filter for unchanging
pitch (henceforth FFV0), one for each of slowly rising and
slowly falling pitch (FFV+1 and FFV−1, respectively), one
for each of quickly rising and quickly falling pitch (FFV+2

and FFV−2, respectively), and two filters for indeterminate
pitch (FFV±3).

4. Decorrelate the compressed FFV spectrum using a normaliz-
ing and/or decorrelating transform, such as the Z-transform,
the Karhunen-Loéwe transform, the sine transform, or the co-
sine transform. In the current work, we use a single, global
Karhunen-Loéwe transform, inferred from the training data.

We note that the above-described procedure deviates slightly
from that used for predicting speaker change in dialog systems [7,
6, 8]. In particular, for Step 1, our earlier work relied on windows
which were placed closer together but skewed away from each other,
and which did not attain zero at ±16 ms. Experiments presented in
[8] showed that on held-out data, the two windows shown in Fig-
ure 1 are better for speaker change prediction than those originally
proposed [7]; we have performed only a limited subset of sanity ex-
periments on the current task to fully tune the window shapes to the
current task. Steps 2, 3, and 4 are identical to those described in
[6], where the current settings were shown to be optimal for speaker
change prediction. Step 3, whose filterbank calls for the evaluation
of Equation 1 over only a subdomain of ρ, offers significant scope
for processing-time reduction.

We note that an alternative account of computing the FFV spec-
trum, not in the context of a discriminative task but with the aim of
improving F0 estimation, can be found in [9].

3. A BASELINE GMM-MFCC SID SYSTEM

The baseline SID system used in this work is shown in Figure 2.
It operates in one of three modes: (1) universal background model
(UBM) training; (2) target speaker enrollment; and (3) testing.
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Fig. 2. GMM-based Speaker Identification System

All three modes of operation rely on identical feature extraction,
which frames the signal into 32 ms windows every 8 ms. We have
chosen this framing policy, developed for speaker change prediction
using the FFV spectrum [7], in order to facilitate the feature-space
combination of MFCC and FFV features; previous experiments have
shown that MFCC baseline system performance is not very sensitive
to changes in frame size (in the range 20-50 ms) and frame step
(in the range 1/6 to 1/3 of the frame size). Frames whose energy is
too low to be considered speaker-discriminative are excluded from
subsequent processing. From each surviving frame, the first 13 Mel-
frequency cepstral coefficients are computed and normalized using
cepstral mean substraction (CMS), yielding the feature vector

MFCC13 ≡ {MFCC0, MFCC1, . . . , MFCC12} . (5)

First- and second-order differences are not used, as they have not
been shown to help on this data.

We model sequences of feature vectors, assumed independent
and identically distributed, with Gaussian mixture models, the most
frequently and successfully employed density estimators in speaker
identification [10, 11]. Every target speaker’s model consists of 4096
components, each parameterized by its a priori probability, mean
vector, and diagonal covariance matrix. We use 4096 Gaussians
here because we anticipate 5 minutes of training data, and have suc-
cessfully used 1024 Gaussians in cases where the training data was
only 1-2 minutes in duration. Target speaker enrollment is preceded
by UBM parameter inference [11], which is accomplished via the
expectation-maximization (EM) algorithm using a large corpus of
speech from non-target speakers. Target speaker model means are
then adapted away from the UBM via maximum a posteriori (MAP)
estimation, using only the target speaker’s speech.

Testing proceeds by applying the same feature processing as
for model training. The observed sequence of feature vectors is
then scored by each speaker’s model. The system hypothesizes that
speaker whose model best accounts for the observed sequence. Per-
formance is assessed using identification accuracy.

4. DATA

Experiments described in the current work use data drawn from the
LDC CSR-I (WSJ0) [12] and LDC CSR-II (WSJ1) [13] corpora.
Speech snippets consist primarily of read sentences from the Wall
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Street Journal, but also include some spontaneously produced utter-
ances. They were selected from files in the published corpora which
had a .wv1 extension (indicating a Sennheiser HMD414 close-talk
head-mounted microphone).

For each target speaker, TRAINSET and TESTSET contributions
were constructed by including utterances until there were at least 5
minutes of speech data per speaker for training, and at least 3 min-
utes, in 3 trials of 1 minute each, for testing. In total, we identified
enough speech data for 95 male speakers and 102 female speakers.
The total number of test trials was 285 and 306, for our male and
female speakers, respectively. Speech from the remaining speakers
(approximately 70 hours) was placed in UBMSET for UBM training.

Our experiments are intentionally limited to same-gender
speaker identification, as our gender classifier can detect gender
in this data with 100% accuracy. The database as described was
designed for several ongoing experiments in our lab, and was mo-
tivated by a need for wideband 16kHz audio, a large number of
potential speakers, a large amount of speech per speaker, and the
availability of relatively clean transcripts. The corpus represents an
intermediate step towards our ultimate goal of evaluating the new
FFV features for far-field speaker identification.

5. BASELINE SYSTEM PERFORMANCE

In Table 1, we show the performance of the baseline SID system
(MFCC13), together with that of several contrastive systems. In par-
ticular, we show the classification accuracy achieved by a system
relying only on higher-order MFCC coefficients,

MFCC7 ≡ {MFCC13, . . . , MFCC19} , (6)

as well as that of various types of system combinations with the
MFCC13 baseline. This includes feature-level combination (⊕) and
model-level or score-level combination (⊗). We have chosen the 7
subsequent MFCC coefficients to make system combinations com-
parable in complexity to those involving the FFV7 features.

Combination at the feature level consists of concatenating the
MFCC13 feature vector with the additional feature vector, e.g.,

MFCC13⊕MFCC7 = {MFCC0, . . . , MFCC19} , (7)

i.e., a new 20-dimensional feature vector. Assessment of perfor-
mance of this combination type requires the training of new mod-
els. For simplicity, in doing so, we do not modify the number of
Gaussians from that employed for the 13-feature MFCC13 baseline.

In contrast, score-level combination does not require new model
training. Identification is performed using a new score

log P (x |Mk
1 ⊗Mk

2 )
.
= λ1 log P (x |Mk

1 ) + λ2 log P (x |Mk
2 ) , (8)

where x represents an utterance’s sequence of feature vectors and
Mk

i is the model for feature set i and speaker k. We split TESTSET
into three subsets, consisting of all speakers’ first trials, second trials,
and third trials, and estimate the weights for each subset based on
individual model {Mk

i } accuracy Ai on the other two subsets, in
round-robin fashion, using λi = Ai/

P
j
Aj . Overall TESTSET

accuracy is obtained by summing along the diagonal of the sum of
the three subset confusion matrices.

As can be seen from Table 1, the MFCC7 system by itself
is significantly weaker than the standard MFCC13 system, given
identical model complexity. However, both feature-level combina-
tion (MFCC13 ⊕ MFCC7) and score-level combination (MFCC13

⊗ MFCC7) result in accuracies which are at least as high as for
MFCC13 alone, for both female and male speakers. Both of these
combinations will be treated as augmented contrast conditions,
when assessing the incremental performance of the 7-feature FFV
representation in Section 6.

System Female Male
MFCC13 82.0 92.3
MFCC7 43.8 68.8
PCA(MFCC13) 84.3 91.2
PCA(MFCC7) 44.4 65.2
MFCC13 ⊕ MFCC7 87.9 94.0
PCA(MFCC13)⊕ MFCC7 87.5 94.0
MFCC13 ⊕ PCA(MFCC7) 88.9 94.0
PCA(MFCC13)⊕ PCA(MFCC7) 90.2 94.0
PCA(MFCC13 ⊕ MFCC7) 87.5 94.0
MFCC13 ⊗ MFCC7 86.3 92.6
PCA(MFCC133)⊗ MFCC7 87.3 92.3
MFCC13 ⊗ PCA(MFCC7) 89.2 93.7
PCA(MFCC13)⊗ PCA(MFCC7) 86.9 93.0

Table 1. Identification accuracies (in %) using several combination
types of standard MFCC features. Numbers in bold represent com-
binations which outperform the MFCC13 baseline.

Table 1 also shows the effect of applying a global Karhunen-
Loéwe transform, obtained via principal component analysis (PCA)
of the entirety of the training data (TRAINSET and UBMSET). In-
terestingly, PCA leads to improved performance for female speak-
ers but slightly degraded performance for male speakers, for both
MFCC13 and MFCC7 features when these are used alone. When
combining MFCC13 and MFCC7 features at the feature-level, the
global PCA transform has no effect on male speaker classification
accuracy. However, for female speakers, applying PCA to MFCC13
only, or to the feature-level combination MFCC13 ⊕ MFCC7, re-
duces accuracy to 87.5%. This suggests that PCA must be applied
to the MFCC7 features independently of the MFCC13 features for
female speakers. Female speaker classification accuracy is highest
(90.2%) when feature-level combination is applied following sepa-
rate PCA transforms for both MFCC13 and MFCC7.

Finally, score-level combination leads to accuracies which are
at least as high as those for the baseline MFCC13 system, but never
outperforms the best feature-level combination. For both genders,
the best score-level combination accuracy is 0.3-1.0% absolute lower
than the best feature-level combination accuracy.

6. INCREMENTAL PERFORMANCE OF FFV FEATURES

In this section, we compare the incremental performance of FFV
features to that of higher-order cepstral features, given an existing
MFCC13 baseline; both the FFV7 and the MFCC7 feature vectors
consist of 7 features. The results, involving the same types of system
combination as in Section 5, are shown in Table 2.

We make 3 specific observations. First, FFV7 features alone
offer better than chance performance, but are inferior to MFCC7
features (themselves inferior to MFCC13 features). Sphering the
MFCC7 features has a small and ambiguous effect across both gen-
ders, while sphering the FFV7 features leads to large improvement;
for female speakers, PCA renders FFV7 features significantly more
powerful than MFCC7 features.
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System Female Male
MFCC13 82.0 92.3
MFCC7 43.8 68.8
FFV7 27.8 45.3
PCA(MFCC13) 84.3 91.2
PCA(MFCC7) 44.4 65.2
PCA(FFV7) 62.7 64.2
MFCC13 ⊗ MFCC7 86.3 92.6
MFCC13 ⊗ FFV7 80.7 92.3
PCA(MFCC13) ⊗ MFCC7 87.3 92.3
PCA(MFCC13) ⊗ FFV7 84.6 92.6
MFCC13 ⊗ PCA(MFCC7) 89.2 93.7
MFCC13 ⊗ PCA(FFV7) 91.8 95.4
PCA(MFCC13) ⊗ PCA(MFCC7) 86.9 93.0
PCA(MFCC13) ⊗ PCA(FFV7) 91.5 95.1

Table 2. Identification accuracy (in %) using the model-space
combination as in Table 1; performance of combinations involving
MFCC13 and FFV7 is contrasted with those involving MFCC13 and
MFCC7. Numbers in bold represent FFV7 combinations which out-
perform the identical combination with MFCC7 features.

Second, feature-level combination of MFCC13 and FFV7 fea-
tures, regardless of the specifics of PCA application, always leads
to performance which is inferior to that obtained by combining
MFCC13 and MFCC7 features. Table 2 does not show these num-
bers due to space constraints.

Third, score-level combination with FFV7 leads to significant
improvement over the MFCC13 baseline for both genders, but re-
quires sphering of the FFV7 features. The best-performing combi-
nation type per gender reduces classification error with respect to the
MFCC13 baseline by 54% for female speakers and by 40% for male
speakers. In addition, when the incremental 7-feature system applies
PCA, combination with FFV7 always outperforms that with MFCC7.
Relative error rate reductions of 24-35% and 26-30% were observed
for female and male speakers, respectively, by moving from combi-
nation with PCA(MFCC7) to that with PCA(FFV7).

We note in closing this section that score-level combination with
either MFCC7 or FFV7 appears to also shrink the absolute gap be-
tween system performance on male and female data, suggesting that
both MFCC7 and FFV7 offer improved modeling of the more widely
separated harmonics characteristic of female speech. That score-
level combination with FFV7 outperforms that with MFCC7 but
feature-level combination exhibits the reverse behavior is somewhat
unexpected, and is the focus of ongoing investigation.

7. CONCLUSIONS

We have explored the FFV spectrum, a continuous, vector-valued
representation of variation in fundamental frequency, for speaker
identification. Although initially proposed for predicting speaker
changes in two-party dialogue, the features appear to discriminate
among speakers, offering information which is complementary to
MFCCs. In particular, on the data set studied, model-space com-
bination with FFV features reduces classification errors by 40-54%
relative to an MFCC baseline, for both female and male speakers.
Our results suggest that modeling does not require large amounts of
training data, as compared to other approaches intended to capture
prosodic dynamics (e.g., [5]). Furthermore, because the FFV spec-

trum does not represent a speaker’s absolute F0, standard modeling
of absolute pitch is likely to lead to orthogonal improvement.

This work also represents the first attempt to infer FFV mod-
els via MAP adaptation, as well as the first successful attempt at
applying FFV processing to audio recorded outside of an anechoic
chamber. In future work, we aim to assess these features on farfield
speech and to extend our experiments to larger datasets.
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