
Parameter Optimization for CTC Acoustic Models in a Less-resourced Sce-
nario: An Empirical Study
Markus Müller, Sebastian Stüker, Alex Waibel
Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Karlsruhe, Germany
Email: {m.mueller,sebastian.stueker,alexander.waibel}@kit.edu

Abstract
In this work, we performed a study evaluating parameter
configurations for acoustic models trained using the con-
nectionist temporal classification (CTC) loss function. We
varied the sizes of the hidden layers and mini-batches. We
further used different optimizer strategies, comparing us-
ing SGD with a static learning rate and newbob scheduling.
We further evaluated multiple configurations for data aug-
mentation: As the acoustic features were extracted using
overlapping windows, neighboring frames contain redun-
dant information. By systematically omitting frames, thus
creating multiple versions of the same utterances, the net-
work can be trained on "more" data. Applying this scheme,
we generated multiple versions of each utterance using dif-
ferent shifts.

We evaluated parameter configurations using two con-
ditions: A multilingual setup with 4 languages and 45h of
data per language which can be considered less-resourced
in the regimen of RNN/CTC acoustic models. In addition,
we used a very low-resource dataset to assess network con-
figurations if less than 10h of data is available.

1 Introduction
All-neural approaches in speech recognition are becom-
ing increasingly popular. Using the connectionist tempo-
ral classification (CTC) loss function [1], such systems are
trained on sequences of output tokens directly, without the
need of traditional HMM-based systems for bootstrapping.
CTC based systems typically make use of recurrent neu-
ral networks (RNNs) like bi-directional LSTM (BiLSTM)
based ones, which are powerful tools for sequence mod-
elling. With less explicitly modeled components, the amount
of data used during training has a larger influence on the
system performance because the neural networks have to
learn implicitly what is modeled explicitly in a traditional
system.

In this work, we evaluated multiple parameter configu-
rations to determine the best system setup. Related studies
have been published in the past, covering the aspects of
how the utterances are shuffled during training [2] or BiL-
STMs in general [3].

This paper is organized as follows: in the next Section
2, we provide a brief overview of multilingual RNN/CTC
based setups. In Section 3, we outline the parameters ana-
lyzed in this study. A description of our experimental setup
is given in Section 4, followed by the results in Section 5.
This paper concludes in Section 6, where we also provide
an outlook to future work.

2 Related Work
Systems trained multilingually using all-neural architec-
tures were proposed in the past. To the best of our knowl-
edge, we were the first to propose using a global set of

acoustic units [4] with a CTC/RNN setup, which we then
improved in multiple iterations [5–7]. A similar approach
was proposed [8], but with the difference of providing the
language identity explicitly. There was also an approach
[9] for this task proposed using and end-to-end architec-
ture with an attention mechanism [10]. Using attention in
combination with CTC was proposed [11] and refined [12]
for better code switching.

3 Parameter Optimization
There are multiple design decisions in building a neural
network based system. In this work, we evaluated using 1)
mini-batches of different sizes, 2) hidden layers of differ-
ent sizes, 3) data augmentation, 4) different optimizers and
5) dropout.

3.1 Mini-batch Size
We evaluted the use of different mini-batch sizes. In or-
der to account for the increased amount of GPU mem-
ory needed for larger mini-batches, we used smaller mini-
batches and accumulated the gradients of several mini-batches
and applied updates to the parameters not after every mini-
batch. Instead of e.g. using a mini-batch size of 15, we
used a mini-batch size of 5 and accumulated the updates of
3 mini-batches and applied them only after the group of 3
mini-batches. While this increased the computation time,
it made the network training more memory efficient.

3.2 Hidden Layer Size
Using this method for saving GPU memory, we were also
able to train networks with larger hidden layers. While we
were previously only able to train this network architecture
using at most 420 BiLSTM cells per layer, we are now able
use up to 1260 BiLSTM cells per layer.

3.3 Data Augmentation
Speech is a highly variable signal. In order to increase
the robustness of our setup, we used a data augmentation
technique similar to the one used in EESEN [13]. We cre-
ated multiple versions of each utterance by stacking fea-
ture frames and omitting every n-th frame. As acoustic
input features, we were using multilingual bottleneck fea-
tures (ML-BNFs). These features are computed based on
the logMel scaled spectrogram. To extract the logMels,
we used a windowsize of 32ms and a frameshift of 10ms.
Adjacent logMel feature frame therefore already contain
redundancies. As input for the ML-BNFs, a context of
+/− 6 frames was used, which again resulted in overlap
between adjacent ML-BNF frames.

As input to our main network, we further stacked the
ML-BNF frames, adding a context of 1 frame towards each
side, hence the network is input a stack of 3 frames for each



time step. Because of the redundant information, we eval-
uated using only very n-th frame. By augmenting the data
with e.g. factor 2, we would omit every second frame, but
due to the context the network would still see every frame.
To create multiple versions of the same utterance, we omit-
ted frames at the beginning of each utterance. When gen-
erating e.g. 4 versions of each utterance, we would omit in
term 0, 1, 2 or 3 frames at the beginning. This results in a
shift in contexts and therefore creates a slight variation be-
tween the different versions of each utterance. In addition,
we would omit every n-th frame after applying the context.

4 Experimental setup
For neural network training, we used CTC.ISL1, a toolkit
we developed to train RNNs using the CTC loss function.
For feature extraction, we used the acoustic front-end of
the Janus Recognition Toolkit (JRTk) [14] which features
the IBIS decoder [15]. We used the Euronews corpus [16]
for our experiments. It contains recordings of the Euronews
TV broadcast station covering multiple languages. In this
work, we used English, French, German and Turkish data
from this corpus for system training. The two conditions
evaluated are either a system trained on 4 languages us-
ing 45h per language, or an additional very-low resource
subset containing only 2h per language.

As input features of our system, we used multilingual
bottleneck features (ML-BNFs). This bottleneck network
was trained on Euronews data using a combination of 5
languages (French, German, Italian, Russian, Turkish), ex-
plicitly omitting English from the training data which serves
as contrasting language to evaluate the performance on a
language not seen during ML-BNF training.

4.1 Baseline Setup
As baseline setup, we used a network with 4 BiLSTM lay-
ers and 420 BiLSTM cells per layer. The network is di-
vided into two blocks of 2 layers. The network architec-
ture for our multilingual setup is shown in Figure 1. The
language adaptation [6] is applied between the two BiL-
STM blocks. The networks were trained using graphemes.
No pronunciation dictionary was used, hence the networks
needed to learn pronunciation rules by themselves. A spe-
cial token was used indicating word boundaries. This forced
the networks to learn a basic language model, as word
boundaries typically do not have an acoustic representa-
tion.

4.2 Evaluation
To evaluate the recognition accuracy of the networks we
computed the character-error-rate (CER) after applying a
greedy-decoding [1]. No external models, e.g. language
models, were used. As the system is trained on single char-
acters, it is an open vocabulary system.

4.3 Conditions
We evaluated optimizing each parameter in turn, starting
with the size of the hidden layers. Next, we evaluated using
different factors of data augmentation, starting with very
little data in a very-low resource condition. We then used
the best condition, to re-train networks on more data as

1https://github.com/markus-m-u-e-l-l-e-r/CTC.ISL

ML-BNF LC

BiLSTM Block 1

*

BiLSTM Block 2

Output Layer

Figure 1: Network architecture used, showing the adapta-
tion with a language code (LC) during multilingual train-
ing.

contrasting experiment. In addition, we evaluated differ-
ent optimizers. Starting with SGD with Nesterov momen-
tum as baseline, we evaluated using newbob scheduling.
In a final experiment, we applied dropout to our networks.
In cases where the very-low resource subset was used, we
reduced the number of BiLSTM cells per layer to 210 to
avoid overfitting.

5 Results
We provide the results for each language in our training
set individually, as well as averaged over all 4 languages
(AVG).

5.1 Network Size
We evaluated using BiLSTM hidden layers with 420, 840
and 1,260 BiLSTM cells. As shown in Table 1, increas-
ing the size of the layers also improves the performance.
The lowest CERs were observed by using 1,260 BiLSTM
cells per layer. Figure 2 shows a graph of the CERs over
the epochs. We did not evaluate increasing the number of
cells beyond this amount because of increased computa-
tional costs and limitations in GPU memory.

Layer Size AVG DE EN FR TR
420 7.9 6.0 12.1 9.1 5.5
840 6.8 5.0 10.3 8.1 4.7

1260 6.4 4.7 9.7 7.6 4.4

Table 1: Hidden layer sizes, showing CERs.

5.2 Dropout
We choose the two best network configurations (840 and
1,260 BiLSTM cells per layer) from the previous experi-
ments and applied dropout training with a dropout factor
of 0.2. The results are shown in Tables 2 for 840 BiLSTM
cells per layer and in Table 3 using 1,260 BiLSTM cells per
layer. Figure 3 shows as the CERs decrease during train-
ing. Applying dropout decreases the CER in both cases,
although the improvements are only marginal.



2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

7

8

9

10

Epochs

C
ha

ra
ct

er
E

rr
or

R
at

e 420 BiLSTM units
840 BiLSTM units

1260 BiLSTM units

Figure 2: Comparison of hidden layer sizes, showing CERs averaged over all 4 languages.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
6

7

8

9

10

Epochs

C
ha

ra
ct

er
E

rr
or

R
at

e No dropout
Dropout 0.2

Figure 3: Comparison of dropout training, using 1,260 BiLSTM cells, showing CERs averaged over all 4 languages.

Dropout AVG DE EN FR TR
0.0 6.8 5.0 10.3 8.1 4.7
0.2 6.5 4.8 9.8 7.6 4.7

Table 2: Applying dropout, 840 BiLSTM cells, showing
CERs.

Dropout AVG DE EN FR TR
0.0 6.4 4.7 9.7 7.6 4.4
0.2 6.3 4.5 9.5 7.5 4.3

Table 3: Applying dropout, 1,260 BiLSTM cells, showing
CERs.

5.3 Optimizers
For the evaluation of different optimizers, we used the very
low-resource subset of the data because of the reduced train-
ing time. To account for less available data, we reduced
the number of BiLSTM cells per layer to 210 and applied
dropout training with a factor of 0.2. The results are shown
in Table 4 and Figure 4. Using SGD and Adam resulted in
similar performance, but using SGD with newbob schedul-
ing decreased the CERs.

5.4 Data Augmentation
We evaluated using data augmentation in two conditions.
First we used the very low-resource subset of the data to
evaluate multiple augmentation factors. The results are
shown in Table 5 and Figure 5. Based on the best config-
uration (augmentation factor 2), we trained networks us-

Optimizer AVG DE EN FR TR
SGD 27.4 21.2 35.9 32.5 22.2
Adam 27.4 21.6 37.3 32.6 20.5

SGD+NB 25.0 19.0 34.3 31.1 18.2

Table 4: Comparison of optimizers, very-low resource
condition, showing CERs.

ing the full dataset. The results as shown in Table 6 and
Figure 6 indicate similar improvements to using the very
low-resource subset.

Augmentation AVG DE EN FR TR
None 23.6 18.0 32.6 29.6 16.5
Factor 2 23.1 17.3 31.8 28.8 16.7
Factor 3 25.0 19.0 34.3 31.1 18.2
Factor 4 27.7 21.6 37.4 33.9 20.2

Table 5: Augmentation factors in very-low resource con-
dition, showing CERs.

Augmentation AVG DE EN FR TR
None 6.9 5.1 10.3 8.2 4.8
Factor 2 6.6 4.9 10.1 7.6 4.6

Table 6: Augmentation factors using the full dataset,
showing CERs.



4 6 8 10 12 14 16 18 20 22 24 26 28 30
20

25

30

35

40

Epochs

C
ha

ra
ct

er
E

rr
or

R
at

e SGD
Adam

SGD + newbob

Figure 4: Comparison of different optimizer strategies, using the very-low resource subset, showing CERs averaged over
all 4 languages.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
20

25

30

35

40

Epochs

C
ha

ra
ct

er
E

rr
or

R
at

e Augmentation factor 4
Augmentation factor 3

No augmentation
Augmentation factor 2

Figure 5: Comparison of data augmentation factors in very-low resource condition, showing CERs averaged over all 4
languages.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
6

7

8

9

10

Epochs

C
ha

ra
ct

er
E

rr
or

R
at

e No augmentation
Data augmentation

Figure 6: Data augmentation using the full dataset, showing CERs averaged over all 4 languages.

5.5 Mini-batch sizes
As final evaluation, we increased the size of the mini-batches
from 15 to 60 utterances. Using smaller mini-batches re-
sults in more localized updates which may contain more
noise, whereas larger mini-batches result in smoother up-
dates which may be to generic. As the results in Table 7
indicate, using a mini-batch size of 60 decreases the per-
formance.

Mini-batch Size AVG DE EN FR TR
15 7.9 6.0 12.1 9.1 5.5
60 8.1 6.0 12.1 9.4 5.6

Table 7: Mini-batch sizes, showing CERs.

6 Conclusion
We have shown the effects of multiple parameters on the
system performance. By using delayed weight updates
with smaller mini-batches, we were able to increase the
size of the hidden layers in our network without increasing
the amount of necessary GPU memory. This enabled both
the use of larger networks and mini-batches.

Based on our experiments, using a network architec-
ture with 1260 BiLSTM cells per layer, SGD with newbob
scheduling, data augmentation with factor 2 and dropout
training with a factor of 0.2 resulted in the best perfor-
mance for the evaluated dataset. Future work includes ad-
ditional experiments to further optimize the mini-batch size
and the application of dropout training which we only ad-
dressed briefly in this work.



References
[1] A. Graves, S. Fernández, F. Gomez, and J. Schmidhu-

ber, “Connectionist temporal classification: labelling un-
segmented sequence data with recurrent neural networks,”
in Proceedings of the 23rd international conference on Ma-
chine learning, pp. 369–376, ACM, 2006.

[2] P. Doetsch, P. Golik, and H. Ney, “A comprehensive study
of batch construction strategies for recurrent neural net-
works in mxnet,” arXiv preprint arXiv:1705.02414, 2017.

[3] A. Zeyer, P. Doetsch, P. Voigtlaender, R. Schlüter, and
H. Ney, “A Comprehensive Study of Deep Bidirectional
LSTM RNNs for Acoustic Modeling in Speech Recogni-
tion,” arXiv preprint arXiv:1606.06871, 2016.

[4] M. Müller, S. Stüker, and A. Waibel, “Language adap-
tive multilingual CTC speech recognition,” in Interna-
tional Conference on Speech and Computer, pp. 473–482,
Springer, 2017.

[5] M. Müller, S. Stüker, and A. Waibel, “Phonemic and
graphemic multilingual ctc based speech recognition,”
arXiv preprint arXiv:1711.04564, 2017.

[6] M. Müller, S. Stüker, and A. Waibel, “Multilingual adap-
tation of rnn based asr systems,” in Acoustics, Speech and
Signal Processing (ICASSP), 2018 IEEE International Con-
ference on, IEEE, 2018.

[7] M. Müller, S. Stüker, and A. Waibel, “Neural language
codes for multilingual acoustic models,” in Interspeech,
2018. submitted to.

[8] S. Kim and M. L. Seltzer, “Towards language-
universal end-to-end speech recognition,” arXiv preprint
arXiv:1711.02207, 2017.

[9] S. Toshniwal, T. N. Sainath, R. J. Weiss, B. Li, P. Moreno,
E. Weinstein, and K. Rao, “Multilingual speech recog-
nition with a single end-to-end model,” arXiv preprint
arXiv:1711.01694, 2017.

[10] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversa-
tional speech recognition,” in Acoustics, Speech and Signal
Processing (ICASSP), 2016 IEEE International Conference
on, pp. 4960–4964, IEEE, 2016.

[11] S. Watanabe, T. Hori, and J. R. Hershey, “Language inde-
pendent end-to-end architecture for joint language identifi-
cation and speech recognition,” in Automatic Speech Recog-
nition and Understanding Workshop (ASRU), 2017 IEEE,
pp. 265–271, IEEE, 2017.

[12] H. Seki, S. Watanabe, T. Hori, J. Le Roux, and J. Her-
shey, “An end-to-end language-tracking speech recognizer
for mixed-language speech,” 2018.

[13] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-end
Speech Recognition Using Deep RNN Models and WFST-
based Decoding,” in Automatic Speech Recognition and Un-
derstanding (ASRU), 2015 IEEE Workshop on, pp. 167–
174, IEEE, 2015.

[14] M. W. et al., “JANUS 93: Towards Spontaneous Speech
Translation,” in International Conference on Acoustics,
Speech, and Signal Processing 1994, (Adelaide, Australia),
1994.

[15] H. Soltau, F. Metze, C. Fugen, and A. Waibel, “A one-
pass decoder based on polymorphic linguistic context as-
signment,” in Automatic Speech Recognition and Under-
standing, 2001. ASRU’01. IEEE Workshop on, pp. 214–217,
IEEE, 2001.

[16] R. Gretter, “Euronews: A Multilingual Benchmark for ASR
and LID,” in Fifteenth Annual Conference of the Interna-
tional Speech Communication Association, 2014.


	Introduction
	Related Work
	Parameter Optimization
	Mini-batch Size
	Hidden Layer Size
	Data Augmentation

	Experimental setup
	Baseline Setup
	Evaluation
	Conditions

	Results
	Network Size
	Dropout
	Optimizers
	Data Augmentation
	Mini-batch sizes

	Conclusion

