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Abstract

In today’s globalized world we have the ability to communicate with people around the world.

However, in many situations the language barrier still presents a major issue. For example, many

foreign students studying at KIT are initially unable to follow a lecture in German. Therefore,

we offer an automatic simultaneous interpretation service for students.

To fulfill this task, we have developed a low-latency translation system adapted to the lecture

domain which covers several language pairs. While the switch from traditional statistical ma-

chine translation to neural machine translation (NMT) significantly improved performance, to

integrate NMT into the speech translation framework required several adjustments. We have ad-

dressed the run-time constraints and different types of input. Furthermore, we utilized one-shot

learning to easily add new topic-specific terms to the system. In addition to better performance,

NMT also enabled us increase our covered languages through the use of multilingual models.

Combining these techniques, we are able to provide an adapted speech translation system for

several European languages.

1 Introduction

In today’s globalized world we have the opportunity to communicate with people all over the world. But,

often the language barrier still poses a challenge and prevents communication. At KIT, there are many

international students from around the world. To deal with the language barrier and support foreign

students in lectures, KIT offers an automatic lecture translation (LT) service in many lecture halls. When

a lecture begins, a recording client is triggered which records the lecturer’s speech and presentation

screen, and sends them to our simultaneous LT system which returns both the transcription and translation

in real-time via a web interface.

Starting from the initial version of lecture translation (Fügen et al., 2006), our system has continu-

ously developed (Kolss et al., 2008; Cho et al., 2013). In 2012, the LT system was first operated in

several lecture halls in KIT with limited coverage; German was the primary spoken language, translated

into English. We now support both German and English as input languages with three additional target

languages: French, Spanish, and Italian. Furthermore, a preliminary multilingual system for 24 lan-

guages is also available. In order to provide efficient recognition and translation services to the students,

we address the following research areas: 1) Low-latency: Transcription and translation needs to be syn-

chronized with the speech of the lecturer as much as possible. How can we provide systems with very

low latency? 2) Multilingualism: How can we minimize the effort and maintenance needed to train and

support many languages? 3) Adaptation: Which adaptation techniques are applicable for online and

low-latency speech translation?

2 Low-latency Speech Translation Framework

Speech is simultaneously recorded by a recording client and sent to a server. There, the three main

components of the system, automatic speech recognition (ASR), segmentation, and machine translation
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(MT), transcribe and translate the audio, which is shown to the user in an interface. The segmentation

system is a monolingual translation system that adds case and punctuation information to the ASR output,

and segments it into appropriate sentences for the translation system. While the main use-case is online

translation, where the user can follow the lecture concurrently on his smart phone or laptop, we also offer

a web-based archive for viewing previously recorded lectures.

One of the main weaknesses in earlier versions of our speech translation framework was the latency

of the system. Since MT systems are usually trained on the sentence-level, the translation would only be

displayed if the whole sentence was recognized. In order to overcome this drawback, we extended our

framework to handle intermediate outputs (Niehues et al., 2016). This allows us to display a translation

for a partly recognized sentence, and later update it with the full sentence translation. The same technique

is also applied to display intermediate hypotheses from the speech recognition which is described in

Section 3.

3 Automatic Speech Recognition

We utilize the DNN-HMM model to build our ASR component. We trained a deep neural network

with several lectures’ audio to model many thousands of context-dependent phonemes. We also utilized

lecturers’ materials such as lecture notes and reading materials to build adapted vocabulary and language

models for the scheduled lectures. While using phoneme-based acoustic modeling is stable for many

different languages, the automatic adaptation of vocabulary and language model allows us to significantly

improve transcription quality based on information from the lectures of the same course and lecturer. A

further advantage to the DNN-HMM model for our use case is that it is a very efficient model for building

low-latency ASR systems. The latency of our ASR system has to be very low to keep transcription and

translation as synchronized with the speech of the lecturer as possible.

Low-latency ASR By using a dynamic decoding framework for ASR, we can avoid the detection of

audio segments, and incrementally perform decoding as soon as a fraction of speech is recorded. This

so-called run-on incremental recognition helps us avoid the latency caused by waiting for the end of the

current segment. Normally, only at the end of an utterance is the most probable hypothesis determined.

However, since waiting until the end of the utterance leads to a high latency, we detect when a part of the

hypothesis becomes stable and can be kept.

Lecture Dictionary Adaptation The web interface allows lecturers to upload lecture materials such as

slides and reading materials that will be accessible for download by students. We make additional use of

these materials by automatically extracting out-of-vocabulary (OOV) words which are not recognizable

by the default ASR system. We generate automatic pronunciations for these word, and map them to a

common word to obtain language model probabilities. This is based on the intuition that these words

are likely to occur in the lecture and should possess higher probability. Adaptation is performed on a

per-lecture basis so that each lecture has its own specialized vocabulary.

4 Neural Machine Translation

The main advancement over previous lecture translation systems is the switch from SMT to NMT, and

the necessary adaptations to do so. In order to use NMT in our framework, we had to develop several

adaptations. First, we improved the run-time for the monolingual translation system by using a dedicated

target encoding. Secondly, we used multi-task learning to improve the performance on translating the

partial sentences necessary in low-latency translation. Finally, we developed methods to easily integrate

topic-specific terms. But the switch also allowed us to significantly increase our language coverage.

Monolingual MT Automatic speech recognition (ASR) systems typically do not generate punctuation

marks or reliable casing. To create segments and better match typical MT training conditions, we use

a monolingual NMT system to add sentence boundaries, insert proper punctuation, and add case where

appropriate before translating (Cho et al., 2017). To train, we create parallel data where the source is

the lowercased sentence with all punctuation removed, and the target is features indicating case with
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punctuation attached. The output vocabulary is then quite small; less than 100. Rare source words

are replaced with POS tags. The training data is randomly segmented so that segment boundaries and

punctuation types are well-distributed throughout the corpus. At test time, we follow the sliding window

technique describe in (Cho et al., 2017), and always keep the previous lw words as context.

Adaption to Speech Since we are using the low-latency framework described in Section 2, the system

does not only need to translate complete sentences, but also partial sentences. In phrase-based MT,

this did not pose a problem. But if the NMT system is only trained on complete sentences, it learns to

always generate complete sentences. Therefore, it will fantasize an ending for an incomplete sentence.

We address this problem by additionally training the system to translate partial sentences. Accordingly,

we first generate artificial training data. To improve corrections while maintaining performance, we use

multi-task learning and train the model to perform both tasks, the translation of partial sentences and the

translation of full sentences (Niehues et al., 2018).

One-Shot Learning In addition to overall translation quality, we identify the importance of translating

rare events which do not appear many times in the training data but are critical to individual lectures They

can be difficult to translate using NMT, but it is crucial for the system to translate them consistently. In

order to incorporate external translations into the system, we designed a framework that allows the model

to dynamically interact with external knowledge bases via both data augmentation and modeling (Pham

et al., 2018). During training, we pre-train phrase-tables with the parallel corpora, and use them to

annotate possible translations for the rare-words that appear less than 3 times in the training data. We

consider word-splitting methods such as BPE crucial efficiently represent words that do not appear in

the training data, and therefore allow proper annotation. By using the COPY-NET the model is able to

learn a bias towards the annotation, which might otherwise have be assigned very small probabilities

by the NMT softmax function. Finally, we use reinforcement learning to guide the search operation to

encourage copying the annotation into the generated sequence.

Multilingual MT In order to build a single neural translation model able to translate into more than

twenty European languages, we follow the approach described in (Pham et al., 2017). Our goal is to

keep the neural architecture as compact as possible while still maintaining parity with the translation

quality of systems trained on individual language pairs on the same data. Fundamentally, we our system

shares its main components across languages: the encoder, the decoder and the attention layer, but em-

ploys different softmax output layers and word embedding layers for different target languages based on

their vocabularies. In this way, the system does not need to calculate over all the words from all target

languages.

5 Results

WERs and Latency of the ASR In Table 1 , we present the performance of our multilingual speech

recognition component in term of word error rates (WER) and word latency. The word latency is mea-

sured as the difference between the time a word is spoken and the time when its transcription is available

at the display component. Since words span a duration we use their end time. Each test set consists of

about 20-30 lecture talks. Typically, recognized words will appear in the display client about 1 second

after real-time. The archived WERs without adaption are below 20.0% for all languages.

# Language WER (%) Word Latency (s)

1 English 15.2 0.84

2 German 19.4 1.03

3 Spanish 14.1 0.79

4 French 19.3 1.11

5 Italian 17.5 0.94

Table 1: WER and Latency of The ASR

Input Das binäre Zahlensystem ist ...

Baseline: The binary payment system is ...

One-Shot: The binary numeral system is ...

Table 2: An example of one-shot learning
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Figure 1: MT Performance when translating from English or German to 24 European languages

Machine Translation Figure 1 shows the results of the multilingual system, translating from English

and German to 24 European languages using a single model trained on the multilingual data. Com-

pared to a standard bilingual system trained on the same data, it achieves better performance: for

English↔German, we see 25.65 BLEU as compared to 24.92 translating into German, and 29.91 BLEU

as compared to 28.74 translating into English. The results confirm our assumption that multilingual

information helps to improve low-resourced translation systems trained individually.

This system achieves its best BLEU scores translating from English to Portuguese and German to

English. This is reasonable, as there are adequate amounts of data in those directions and there are

related languages which can assist by providing additional context. At the other end of the spectrum,

the system obtains its worst results when translating into Finnish as there is not much parallel training

data, and Finnish is the most morphologically-rich language in our set, further impoverishing the data

condition.

When translating in specific domains, words which are generally rare can be incredibly important to

translate correctly. For example, if we consider a lecture about the binary numeral system or Zahlen-

system, it is necessary to translate this term or the meaning of the lecture is lost. One-shot learning

allows us to do so, as shown in Table 2. Without one-shot learning, we have not seen this term before.

Using byte-pair encoding, the system is generate a translation for Zahlensystem, but it incorrectly gen-

erates the translation payment system for the similar German word Zahlsystem. By adding the phrase

{Zahlensystem # numeral system} to our memory, we are able to correctly translate this word in context.

6 Conclusion

This paper describes recent advancements for low-latency speech-to-text translation. Using several tech-

niques, we were able to use fully neural methods for the machine translation component of our system.

Further, by using multi-task and reinforcement learning, we were able to use NMT in a low-latency

framework that can be easily adapted to new topics. These neural methods have allowed us to signif-

icantly increase our covered languages. Our multilingual model is able to translate from two source

languages to 24 target languages, while fitting in memory on a moderate-size GPU.
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