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Abstract

Through the development of neural machine translation, the

quality of machine translation systems has been improved sig-

nificantly. By exploiting advancements in deep learning, sys-

tems are now able to better approximate the complex mapping

from source sentences to target sentences. But with this abil-

ity, new challenges also arise. An example is the translation of

partial sentences in low-latency speech translation. Since the

model has only seen complete sentences in training, it will al-

ways try to generate a complete sentence, though the input may

only be a partial sentence. We show that NMT systems can

be adapted to scenarios where no task-specific training data is

available. Furthermore, this is possible without losing perfor-

mance on the original training data. We achieve this by creating

artificial data and by using multi-task learning. After adapta-

tion, we are able to reduce the number of corrections displayed

during incremental output construction by 45%, without a de-

crease in translation quality.

Index Terms: speech translation, low-latency

1. Introduction

Neural machine translation (NMT) is currently the state-of-the-

art in machine translation, significantly improving translation

quality in text translation [1] as well as in speech translation

[2], where the translation input is the output from a speech rec-

ognizer. The main strength of neural machine translation is im-

proved output fluency compared to traditional approaches, such

as rule-based or statistical machine translation.

However, while the model is able to capture more complex

dependencies between the source and target languages, it relies

heavily on training data examples to do so. As a consequence,

the model lacks the robustness at test time to handle data that is

fundamentally different from what was seen in training. There

are several scenarios where this can be observed. For exam-

ple, if the input is incorrectly cased, or if a different dialect is

presented at test time which has different spelling or phrasings.

In this work, we will concentrate on a speech translation

use case in which the translation system is required to provide

an initial translation in real time, before the complete sentence

has been spoken. To this end, [3] presented an approach where

partial sentences are translated and later replaced if necessary

with the translations of the complete sentences. While we focus

on this use case, the results of this work can be easily adapted to

other use cases where there are differences between the training

and testing scenarios.

When applying partial sentence translation to neural ma-

chine translation systems, we encounter the problem that the

MT system has only been trained on complete sentences, and

thus the decoder is biased to generate complete target sentences.

When receiving inputs which are partial sentences, the transla-

tion outputs are not guaranteed to exactly match with the in-

put content, which can be seen in Example 1.1. We observe

that the translation is often “fantasized” by the model to be a

full sentence, as would have occurred in the training data. In

the example below, although the English input ends with ‘all

of’, the system generates the translation ‘todo el mundo’ (Engl.

‘all of the world’). In other cases, the decoder can fall into an

over-generation state and repeat the last word several times (eg.

‘deberı́a, deberı́a, deberı́a’).

Example 1.1. Examples of challenges in using NMT to trans-

late spoken utterances.

English: I encourage all of

Spanish: yo animo a todo el mundo .

English: now , I should

Spanish: ahora deberı́a , deberı́a , deberı́a .

In this work, we aim to remedy the problem of partial sen-

tence translation in NMT. Ideally, we want a model that is able

to generate appropriate translations for incomplete sentences,

without any compromise during other translation use cases. Our

approach involves using multi-task learning and the automatic

generation of parallel corpora in which both the source and the

target sentences are incomplete sentences.

2. Related Work

The main topic of our work is adapting to different types of

inputs for neural machine translation. Previous works have fo-

cused on domain mismatch between the training data and test

data [4]. In the case of speech translation, the model may only

be exposed to specific issues arising from speech recognition

outputs during test time. Since speech input can carry over er-

rors from the ASR system to translation, it is necessary to adapt

the model to noisier circumstances. To handle this scenario,

previous work has proposed introducing artificially corrupted

inputs at training time [5] or direct training on lattices produced

by the speech recognition system [6].

Multi-task learning has commonly been used in various

NLP problems to jointly train a single model for several well-

established NLP tasks, reducing overhead and improving per-

formance. Such implementations can be seen using the encoder-

decoder model with attention mechanism [7], in which a single

model is trained for part-of-speech tagging, named-entity tag-

ging and machine translation simultaneously [8].

Regarding low-latency speech translation, various ap-

proaches to translating small text segments exist using statis-

tical phrase-based models [9, 10, 11] or neural networks [12].

Due to the fact that the whole input sentence is not available, it

is necessary to find a compromise between translation quality

and latency. The decoding process of the neural models also

needs to be changed to deal with a stream of inputs, which is

non-negligible. It is also possible to use the revision strategy to
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update the partial translations, which has been implemented in

practical systems [3].

3. Low-Latency Speech Translation

In the practice of simultaneous speech translation, translation

quality is not the only criterion; it is also important to produce

a translation for a spoken utterance in real-time and at low la-

tency. Since a speaker’s utterance can be arbitrarily long, it is

necessary for the translation system to start operating before the

speaker stops, in which case the system input will consist of in-

complete spoken segments instead of full sentences.

We explore the translation revision method of [3], which

has been successfully applied to statistical translation systems.

The key idea of this method is that the system iteratively revises

translations by re-translating new messages sent by the speech

recognition component. These newly sent messages are either

replacements of or concatenations to previous ones. As a result,

the user sees the translation continually updated in the interface.

For example, for the sentence ‘I encourage all of you’, the

system first receives only the beginning of the sentence ‘I’, with

the intermediate translation being ‘yo’. Afterwards, it receives

an update which is the continuation of the previous one: ‘I en-

courage all of’. The resulting translation from a typical neural

model would be ‘yo animo a todo el mundo’, hypothesizes a fi-

nal word. Finally, the whole source sentence is available, and

the MT system will update the translation of the sentence to ‘yo

animo a todos ustedes’.

As can be seen from the above example, in the last transla-

tion step the interface has to update the words ‘todo el mundo’

for ‘todos ustedes’, which was generated only when the full sen-

tence was available. As a result, we experience a delay which

comes from the second to last translation step, which is longer

than necessary. The interface also suffers from the update, since

nearly half of the sentence needs to be replaced. Despite the

fact that the final translation quality in the end does not depend

on the processing of each segment, the intermediate translation

outputs may change drastically due to source sequence updates.

The problem is exacerbated by the fact that a neural machine

translation model trained with normal parallel corpora is not

able to flexibly generate translation for partial input segments,

which were not available during training. The aim of our work

is to build an online machine translation models which mini-

mizes the number of words which need to be corrected until

the full sentence has been seen. We aim to minimizing such

criteria while maintaining translation quality for the complete

utterance.

4. Partial Translation

As motivated in the introduction, an out-of-the-box NMT sys-

tem struggles with partial input sentences. In order to improve

the flexibility of the model, we investigate generating parallel

corpora in which the input and output are also partial sentences.

Subsequently, we adjust the training process to make use of the

data in order to build a single system that is proficient at trans-

lating partial as well as full sentences.

4.1. Generating Partial Parallel Corpora

In order to build a system that is good at translating partial sen-

tences, we need to build partial sentence training data. Since

such data is not available, we investigated methods to build an

artificial training set from standard parallel data. This has the

advantage that the methods can be easily applied to any lan-

guage pair and domain and no new data has to be collected.

Creating the source data is straightforward. Given a source

sentence S = s1 . . . sI , we can generate I input samples

S(i) = s1 . . . si by selecting the first i words. The challenge

arises from defining the correct translation for this source string.

Since we are using this data in a low-latency speech translation

system, the translation of the partial sentence should meet sev-

eral conditions. First, it should be as long as possible in order

to minimize the latency of the system. If we always used only

the first word, we would not improve latency over a system that

waits until the sentence is finished. Furthermore, to minimize

the number of corrections, the translation of S(i) should be a

substring of S(i′) for all i′ > i. Thus the translation of S(i)

should be a substring of the reference translations.

One possible solution is to take the reference translation of

the whole sentence. But, it is unrealistic to be able to generate

the whole target sentence from only a single word in the source

string. Therefore, we investigated two methods to select a rea-

sonable substrings from the reference translation.

The first method is motivated by the idea that the transla-

tion should constantly generate longer target sequences when

receiving longer source segments. Furthermore, word reorder-

ing may exist between two languages, for many languages sen-

tence structure is similar. Consequently, a first approximation is

to use the same proportion of words from the reference transla-

tion as we have from the source sentence.

One problem in this case is that we introduce additional

noise. If the word order is different, we force the system to

guess the words coming next in the source sentence. To avoid

this problem, we first generate a word alignment using Giza++

[13] between the source and target sentences. Then, we select

the longest prefix of the reference so that no target words in

the prefix are aligned to source words that are not in the partial

sentences:

T
(i) = argmax

j∈J

{t1 . . . tj | ∨ j
′ ≤ j : a(j′) ≤ i} (1)

4.2. Training Process

Multi-task training Given the artificially produced training

data, a first step is to train a model on the newly created partial

sentence data and use it for speech translation only. Since both

tasks are very similar, we first pre-train a standard NMT system

and then fine-tune the system to translate partial sentences.

The disadvantage of this approach is that the performance

on complete sentences might drop, since NMT models tend to

rapidly forget what they have learned before. In order to have a

system that is able to generate high quality translations of both

complete sentences and partial sentences, we opt to use multi-

task learning, treating these as two separate tasks. In our ap-

proach, we randomly subsample the partial sentence training

data to make it the same size as the original training data, so

that the model can put equal emphasis on both tasks. The mixed

training data then has twice as many sentences as the baseline

system, but significantly less than the system using all partial

sentences. Then, we fine-tune the NMT system on both tasks:

translating complete sentences as well as the partial counter-

parts.

Sequence level optimization Beside multi-task learning, we

can also guide the search operation of the model so that the

generated output is better matched to the source input. We use

reinforcement learning with policy gradient methods [14, 15] to



train the model to maximize the GLEU score [16], which is the

combination of n-gram precision and recall. This reward func-

tion restricts the model from generating sentences that are too

long. Since this method is known to have high variance gradi-

ents, we follow the method in [17], which estimates a baseline

using greedy search to reduce the variance.

5. Experimental Results

We evaluate the method on three different languages pairs:

English-Spanish, English-French and German-English.

5.1. System description

For all experiments, we trained systems on the Europarl [18]

and the WIT-TED corpora [19] and tested on test sets from the

IWSLT evaluation campaign. All systems were adapted to the

TED domain by fine-tuning on the in-domain TED data. For

the English→Spanish and English→French directions, we also

optimize the models towards GLEU scores [16] using reinforce-

ment learning (RL). For partial sentence translation (both data

generation and training), we utilize only the TED corpus. We

used the OpenNMT-py toolkit [20] to train the systems. For

each language pair, we jointly trained BPE [21] for the source

and target languages.

5.2. Evaluation metrics

We evaluated the translation quality using the BLEU score [22].

Since the ASR output uses automatic sentence segmentation,

we need to re-segment the translation to fit the reference trans-

lations. Therefore, we used the method described in [23], where

the automatic translation is re-segmented in a way that mini-

mizes the word error rate to the reference.

In addition, we also need to measure the extent to which

we are able to reduce the number of corrections in the spo-

ken language translation (SLT) system. To do so, we roll out

all updates from the ASR system and translate each. For each

updated translation, we measure the overlap between pairs of

consecutive updates st and st+1 and calculate the amount of

re-writing necessary to produce st+1 after st. Specifically, the

number of corrected words is calculated by the length of the

translation of st, minus the length of the common prefix both

translations. As illustrated in the example in Section 3, the final

update would lead to 3 corrected words (Word Up). Since an

intermediate word change will force the user to reread all fol-

lowing words, our metric also counts all words following the

first corrected word as corrected. We also report the number of

messages where at least one word is corrected (Messg. Up.).

5.3. Experiments

Initial results Our initial results on the English→Spanish

translation task are shown in Table 1. We report results in

BLEU on the test and validation set with full sentence trans-

lation. Next, we report results on the test data with all possible

prefixes, and finally, results on the ASR output. In the initial

experiments, we use length ratio to determine the length of the

reference for the partial translations as described in Section 4.1.

The baseline system is only trained on complete sentences. All

other systems use the baseline system, and continue training us-

ing different strategies. The system ”Partial” is fine-tuned on all

partial sentences. As shown in the first two lines of Table 1, the

final translation quality drops significantly by ∼1 BLEU point.

On the other hand, the BLEU score calculated on only partial

sentences improves by ∼3 BLEU points. As shown by the num-

ber of tokens, the length of translations is reduced by 25%. So,

a major problem of the baseline system is that it generates trans-

lations that are too long for the partial sentences. When testing

on the ASR output in the last two columns, we see that the trans-

lation quality of the final hypothesis also drops, but the number

of words which are updated is reduced by 45%. Also, the num-

ber of messages where at least one word changed is reduced

by 20%. The system in the third line uses multi-task learning.

In this case, the system is trained to perform both tasks: trans-

lation of partial and full sentences. Using this technique, we

can combine the advantages of both models and maximize the

translation quality of the final hypothesis, while minimizing the

number of updates. The system has the same translation quality

as the baseline system, with the same reduction in updates as

the partial system.

Performance w.r.t the artificial data In the second set of ex-

periments, we analyzed the use of the artificial data. We used

the alignment-based method to generate the references for the

partial sentences. In this case, we again fine-tuned used multi-

task learning. As shown in the results in Table 1, there is

no clear performance difference between the two approaches.

When translating text input, the system using length-ratio refer-

ences is better, while the system using alignment-based meth-

ods is better on partial sentence and speech translation. Since

the length-ratio based method is simpler, we used this approach

for the remainder of this work.

Sequence-level optimization Finally, we also used reinforce-

ment learning (RL) to optimize the performance of the system

directly towards BLEU. These systems are first trained using

cross-entropy and continue training using reinforcement learn-

ing. Here again, we have a baseline system trained only on the

full sentences, and a multi-task system trained on both the full

and partial sentences (final two lines of Table 1). As above,

we observe that with multi-task learning, we do not lose perfor-

mance on full sentences, while we can significantly reduce the

number of updates. In this case, the number of words updated is

further reduced, reaching more than 50% less than the baseline.

English→French We also performed experiments using two

English to French systems, which are summarized in Table 2.

We again have a baseline system trained with cross-entropy,

and a baseline system where training is continued with RL. The

models were evaluated on the full sentences and the mixed set

of complete and partial sentences, as well as on the ASR output.

Similar to the other translation directions, we improved transla-

tion performance on partial sentences and reduced the number

of rewritten tokens for the SLT output by using multi-task learn-

ing. Interestingly, using reinforcement learning also helped us

improve the performance on partial sentences. The RL crite-

ria evaluates the n-gram precision as well as the recall of the

translation, which is punished when the generated output is too

long. Both methods can be combined to achieve the overall best

performance, which reduced the rewritten tokens by up to 50%

without compromising translation performance.

German to English Finally, we also performed experiments

on English to German as shown in Table 3. Again, we can im-

prove the number of rewrites needed to produce the final output.



System Valid (tst2011) Test (tst2012) TEDTest Partial SLT (tst2010)

BLEU BLEU BLEU length (tokens) BLEU Word Up Mssg. Up.

Baseline 36.86 31.33 26.66 509K 25.97 182K 15.0K

Partial 35.45 30.29 29.48 375K 25.54 98K 11.8K

Multi-task 37.05 31.27 30.09 376K 26.00 101K 12.0K

Align. ref. 37.13 31.06 30.29 371K 26.30 98K 11.5K

RL 37.21 31.25 30.08 540K 26.61 179K 15.1K

RL + Multi 37.50 31.21 30.31 377K 26.77 82K 11.5K

Table 1: Results for English to Spanish

System tst2010 SLT(tst2010)

Final Mix BLEU Word Up Mssg. Up.

Baseline 34.11 31.18 23.84 216K 16.3K

Multi 34.40 34.71 23.83 128K 13.5K

RL 35.08 34.09 24.31 140K 15.0K

RL +Multi 34.84 42.51 24.23 99K 12.1K

Table 2: Results for English to French

For this language pair, however, the number of updates mes-

sages is only slightly reduced. The reason for this might be the

larger reordering needed between the two language pairs.

System SLT(tedX2015)

BLEU Words Up. Messg. Up

Baseline 15.52 246K 23.6K

Multi-task 15.64 172K 23.1K

Table 3: Results for German to English

5.4. Examples

In addition to the evaluation in the last section, improvements

using our approach can be seen through examples for English-

Spanish and German-English, shown in Table 4.

In both cases, we see that the baseline system is not able to

generate translations for very short sequences. In this case, the

last word is repeated several times. In addition, since the NMT

system is tested on input it is not accustomed to, we see that

the NMT decoder relies more heavily on language modeling in-

formation and completes the sentence in a way that is typical in

the target language, regardless of the source input. For example,

we see the added and so on in the first message for the German

to English system. The multi-task system, however, has been

trained to handle partial sentences and is therefore able to gen-

erate a correct translation.

Finally, another interesting point is how the systems handle

punctuation. The baseline model for German to English is only

able to generate the correct translation if the sentences ends with

a punctuation mark. This can be seen in the two last examples,

which contain the same words, but only the second has punc-

tuation. The multi-task system, in contrast, is able to generate

the correct translation before the input is correctly punctuated.

While most errors happen in very short (one or two words) par-

tial sentences, longer partial sentences can also be problematic

because of issues like punctuation, which suggests that ignoring

short sentences is not a proper solution.

English to Spanish

Input: now,

Baseline: ahora ,

Multi-task: ahora ,

Input : now, I should

Baseline: ahora deberı́a , deberı́a , deberı́a .

Multi-task: ahora deberı́a

Input : now, I should men

Baseline: ahora deberı́a hombres hombres .

Multi-task: ahora deberı́a

Input : now, I should mention that this

Baseline: ahora deberı́a mencionar esto .

Multi-task: ahora , debo mencionarlo .

German to English

Input: Und

Baseline: And and and and and so on.

Multi-task: And

Input : Und ich habe

Baseline: And I have

Multi-task: And I have

Input : Und ich empfehle Ihnen

Baseline: And I recommend you to you

Multi-task: And I recommend you

Input : Und ich empfehle Ihnen .

Baseline: And I recommend you .

Multi-task: And I recommend you .

Table 4: Examples for English-Spanish and German-English

6. Conclusion

Low latency translation is important for real-time speech trans-

lation systems. To address this challenge, we improve upon a

mechanism to translate partial speech input and make updates in

real-time. Our main contribution is to propose a simple method

to deal with scenarios where data at inference time is different

from the training data, which can be resolved with adaptation.

We first showed that using simple techniques to generate arti-

ficial data are effective to get more fluent output with less cor-

rection. We also illustrated that multi-task learning can help

adapt the model to the new inference condition, without losing

the original capability to translate full sentences. Combining

these two ideas, we are able to maintain high quality translation

at low latency, minimizing the number of corrected words by

45%, which significantly improves user experience for practi-

cal applications.
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