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Abstract: In the past, we proposed the use of Language Feature Vectors (LFVs)
to better adapt multilingual speech recognition systems to languages. Recently, we
applied this method to RNN/CTC based systems. The recognition accuracy could
be improved by modulating the network using LFVs. In this work, we propose an
improvement to this approach by refining the network architecture as well as the
training strategy. We first evaluated multiple methods for applying the modulation.
As we are using bi-directional layers, each unit outputs two values, one per direc-
tion. Optimizing the combination of the outputs for each direction did improve the
performance. In addition, we propose a method for including phonetic informa-
tion into the training process of a graphemic system. By pre-training layers using
phones as targets, the network did learn features to discriminate phones. Adding
more layers and a two stage fine-tuning process using graphemes, we first forced
the network map phonetic features to graphemes. In the second stage, we allowed
the network to update the phonetic feature detectors as well. Both methods im-
proved the performance of our setup. We evaluated our setup using a combination
of 4 languages (English, French, German, Turkish), with a joint set of acoustic
units.

1 Introduction

Lately, automatic speech recognition systems based on recurrent neural networks (RNNs),
trained using the connectionist temporal classification (CTC) loss function [1], have gained
substantial research interest. Due to the recurrent nature of the networks used, such systems are
able to capture sequential dependencies implicitly, without the need to explicitly model con-
text by, e.g., context-dependent phone states. In this work, we focus on multilingual systems,
based on graphemes as acoustic modeling units. We aim at training a single, multilingual model
which is able to recognize speech from multiple languages simultaneously. In the past, we pre-
sented an approach to train RNN/CTC systems jointly on multiple languages using a global set
of either graphemes or phonemes as acoustic units. While using graphemes as acoustic units
can be a challenging task for languages with complex pronunciation rules, e.g., English, train-
ing a system on a combination of languages is even more difficult: The network has to infer
the pronunciation rules for multiple instead of a single language. In order to adapt networks
to multiple languages, we proposed using Language Feature Vectors (LFVs). Extracted via
a neural network, they encode language specific peculiarities as low dimensional vector. For
RNNs, similar to feed-forward networks, appending the LFVs to the input features increases
the performance. In a series of experiments, we determined that modulating the layers of RNNs
does result in better performance. Akin to dropout, the modulation emphasizes or attenuates
the outputs of neurons, based on encoded language properties. This forces the network to adapt
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feature detectors based on language features which improves the performance in a multilingual
setting.

In this work, we extended our approach in two ways: a) by optimizing the network architec-
ture and b) integrating phonetic information into grapheme based systems. First, we optimized
the network architecture. Since we are using bi-directional LSTM layers, the output of each
layer has twice the size of the number of LSTM cells. As input to the next layer, these outputs
could be passed along unchanged, or the outputs for each direction could be combined pairwise.
In a series of experiments, we compared the performance of addition, multiplication or taking
the maximum of the outputs (inspired by maxout networks [2]) to simply passing the outputs
along unchanged.

In order to add phonetic information, we choose to train the networks in a two step ap-
proach: First, we pre-trained the network using phones as targets. Next, we replaced the output
layer trained on phones, added two additional LSTM layers and fine-tuned the network again,
using graphemes as targets. Pre-training with phonetic targets forced the network to extract
features to discriminate phones. The fine-tuning process using graphemes then allowed for the
network to learn a mapping from phonetic features to graphemes. This paper is organized as
follows: In the next Section 2, we provide an overview of related work in the field. In Section 3,
we outline our proposed method. The experimental setup is described in Section 4, followed by
the results in Section 5. This paper concludes with Section 6, where we also provide an outlook
to future work.

2 Related Work

Using GMM/HMM based systems was considered state of the art prior to the emergence of
systems with neural networks. Data sparsity has been addressed in the past, by training systems
multi- and crosslingually [3, 4]. Methods for crosslingual adaptation exist [5], but also methods
for adapting the cluster tree were proposed [6].

2.1 Multilingual BNFs

Deep Neural Networks (DNNs) are a data-driven model with many parameters to be trained,
failing to generalize if trained on only a limited data set. Different methods have been proposed
to train networks on data from multiple source languages. Training DNNs typically involves a
pre-training and a fine-tuning step. It has been shown, that the pre-training is language indepen-
dent [7]. Several approaches exist to fine-tune a network using data from multiple languages.
One method is to share hidden layers between languages, but use language specific output lay-
ers [8, 9, 10]. Combining language specific output layers into one layer is also possible [11].
By dividing the output layer into language specific blocks, the setup uses language dependent
phone sets. Training DNNs simultaneously on data from multiple languages can be considered
multi-task learning [12, 13].

2.2 Neural Network Adaptation

Several methods for adapting neural networks to different speakers have been proposed. Using
1-Vectors [14] is the most common method. Based on this low dimensional representation of
speaker properties, speaker adaptive neural networks [15] can be built. An alternative method
for adaptation are Bottleneck Speaker Vectors (BSVs) [16]. These methods show that neural
networks benefit from additional input modalities. Similar to BSVs, we proposed an adapta-
tion method for adapting neural networks to different languages when trained multilingually.
We first proposed using the language identity information via one-hot encoding [17]. But this



method does not supply language characteristics to the network. Language Feature Vectors
(LFVs) [18, 19] have shown to encode such language properties, even if the LFV net was not
trained on the target language.

2.3 CTC Based Systems

Recently, CTC-based [1] systems have gained in popularity. Such systems can be trained on
either phones or graphemes as acoustic units, but also jointly together [20, 21]. Multi-task
learning has also been proposed [22, 23, 24]. It also has been demonstrated that CTC based
systems are able to outperform HMM based setups [25]. We proposed a first approach towards
training CTC systems multilingually [26], and refined it by using more languages [27] and
modulation [28].

3 Multilingual RNN/CTC Based Systems

There are multiple ways of building multilingual systems. Here, we built systems using a global
set of acoustic units. This enables the acoustic model to recognize speech independent of the
language. Traditional speech recognition systems are built to recognize speech of a single
language. The performance of a system having a language dependent set of acoustic units is
typically better. We therefore aim at developing adaptation techniques to close the gap between
systems with multi- and monolingual sets of acoustic units.

3.1 Network Architecture

Our network architecture is based on Baidu’s Deepspeech 2 [29]. As input features, we use
multilingual bottleneck features (ML-BNFs). We therefore omitted the convolutional layers
of Baidu’s architecture, as adjacent dimensions in ML-BNFs have so spacial relation. The
architecture, shown in Figure 1, uses 4 layers with bi-directional LSTM (BLSTM) cells, with a
final feed-forward output layer. After pre-training, two additional layers were added.

LFV Additional

Modulation Layers
Input o o Output
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Figure 1 — Network layout with modulation of the output after the second hidden layer with LFVs and
additional layers added after pre-training.



3.2 Neural Network Modulation

One method for adapting the acoustic model to multiple languages is the use of LFVs [18].
Extracted via a neural network, they encode language properties which enable adaptation to
multiple languages. A similar technique based on i-Vectors is used to adapt networks to the
properties of speakers. For applying the LFVs, we used a method called “modulation” instead
of simply appending the features to the acoustic input vectors. The modulation, introduced as
part of Meta-PI networks [30], multiplies the output of a unit with a coefficient. The number of
LSTM cells in the hidden layers was chosen to be a multiple of the dimensionality of LFVs. The
output of each layer could therefore be split into groups of equal size and each group was mul-
tiplied with one LFV coefficient. Modifying the output of units is similar to dropout training,
where connections between units are being dropped on a random basis. The method proposed
here could be considered an “intelligent dropout”, where the outputs of units are emphasized
or attenuated based on LFV coefficients. This forces the network to learn features based on
language properties. Each group of units is modulated with a dimension of the LFVs, which
forces networks to learn features depending on the language representation. As we are using
bi-directional layers, each layer outputs two values for each LSTM cell. There are multiple pos-
sibilities of forwarding these values from one layer to the next. With respect to the modulation,
we evaluated multiple configurations of combining the outputs for both directions.

3.3 Training Strategy

We trained our networks using a multi step approach. First, we pre-trained 4 BLSTM layers
using phones as targets. Two additional layers were added and the network was trained using
graphemes as targets, while keeping the weights of the first 4 layers fixed. A final fine-tuning
step updating all network weights was then performed. Training a network in this manner
forces it to first learn features to discriminate between phones. Keeping the first 4 layers fixed
during the first round of fine tuning causes the two additional layers to learn a mapping between
phonetic features and graphemes. The final fine-tuning step updating all the weights enables the
network to further optimize the feature detectors in the first layers for discriminating graphemes.

4 Experimental Setup

For our experiments, we used data from the Euronews Corpus [31], which contains TV broad-
cast news recordings covering multiple languages. In total, this corpus includes data from 10
languages. We filtered the data, excluding all utterances being shorter than 1s, or having a tran-
script longer than 639 symbols'. After filtering, approx. 50h of data per language remained. As
test set, Sh were selected randomly on a speaker basis.

As input features to our systems, we used ML-BNFs. The network for their extraction was
trained on data from 5 languages (French, German, Italian, Russian, Turkish). During training,
the hidden layers were shared between languages, with the output layers being language de-
pendent. Training data was obtained using traditional DNN/HMM based systems to force align
the reference transcriptions to the recordings and to obtain frame-level state labels. As input
features to the network, a combination of logMEL and tonal features (FFV and pitch) was used.

Internal limitation within the implementation of CUDA/warp-ctc, see: https://github.com/baidu-
research/warp-ctc, accessed 2018-01-23



4.1 Acoustic Units

We used two types of acoustic units to train our networks: Phones and graphemes. In order
to create a pronunciation dictionary, MaryTTS [32] was used. As we were using data from
multiple languages in a multilingual setting, we needed to establish a mapping of phone symbols
across languages to ensure that the same phone is represented by the same symbol independent
of the language. This mapping was established using the definitions of articulatory features
within each of MaryTTS’ language definition files.

4.2 Neural Network Training

The network for the extraction of LFVs is trained using data from 9 languages (Arabic, French,
German, Italian, Polish, Portuguese, Russian, Spanish, Turkish). ML-BNFs were used as input
features. The network featured a similar configuration as BNF networks by having 6 hidden
layers and a narrow bottleneck layer as second last layer. In contrast to speech recognition
systems, this network requires a much larger context as the language information is long-term
in nature. We used a context window covering +/— 33 frames in each direction, resulting in
a total context of 690ms. After training, all layers after the bottleneck were discarded and the
output activations of the bottleneck were used as LFVs.

The BLSTM networks of the acoustic modeling were trained on 4 languages (English,
French, German, Turkish) using stochastic gradient descent and Nesterov momentum with a
factor of 0.9. Weight updates were applied using mini-batches with a size of 15. During the
first epoch, the training utterances were sorted ascending by length to stabilize the network
training, as, in general, shorter utterances are easier to align.

4.3 Evaluation

We evaluated our setup using two error metrics: Token Error Rate (TER) as well as Word Error
Rate (WER). TER was used to evaluate the performance of the RNN without decoding with a
language model (LM). WER was used in combination with an character based RNN-LM and
greedy decoding using the best path. The language model was trained on the training utterances
only and is therefore not a strong language model. But it should provide an indication, if the
improvements reported in TER are also reflected in the WER of the system.

5 Results

5.1 Combining layer outputs

When using bi-directional networks, each unit outputs one output for each direction which
doubles the outputs of each layer. For applying the modulation, we evaluated ways of com-
bining the outputs for each direction by either simply appending the outputs for each direction
or adding, multiplying, taking the maximum value pairwise for each direction. The results us-
ing graphemes are shown in Table 1 and phones in Table 2. We reported the results for all 4
languages using both graphemes and phones.

When using graphemes, the pairwise multiplication of the outputs leads to the worst perfor-
mance. Taking the maximum value of each pair does result in the best performance, except for
English and German where it is en par with summation. Using phones, the maximum does re-
sult in the best performance for English, German and Turkish, whereas appending the elements
shows the best results for French. The multiplication here also produces the worst results. In
general, taking the maximum for each direction does improve the performance in almost all



cases and only reduces the performance for French using phones. This idea was first introduced
as maxout networks [2], where the neuron would output the maximum value of the inputs.

Table 1 — Evaluation of merging strate- Table 2 — Evaluation of merging strate-

gies, TER on grapheme based systems gies, TER on phone based systems
Strategy | DE | EN | FR | TR Strategy | DE | EN | FR | TR
Append | 7.8 | 11.2 | 89 | 6.1 Append | 6.7 | 11.8 | 9.5 | 5.8
Sum 7.7 | 11.0 | 9.0 | 6.2 Sum 7.0 | 12.1 | 10.1 | 6.0
Multiply | 7.9 | 11.7 | 9.2 | 6.2 Multiply | 7.2 | 12.8 | 10.5 | 6.0
Max 7.7 | 11.0 | 8.8 | 6.0 Max 6.7 | 11.7 | 98 | 5.7

5.2 Phonetic Pre-Training

Next, we evaluated performing a pre-training step using phonetic targets with the best merging
strategy as determined in the previous section. As shown in Table 3, pre-training the network
on phonemes and adding two additional layers does result in better performance. As contrastive
experiment, we included results using a 6 layer network. Simply using more layers does not
improve the performance. WERs are shown in Table 4 and show that improvements can also be
observed when decoding with an LM.

Table 3 — Evaluation of phonetic pre-

training, TER on grapheme based sys- Table 4 — Evaluation of phonetic pre-
tems training, WER
Strategy DE | EN | FR | TR Strategy EN
Baseline (4L) | 7.7 | 11.0 | 8.8 | 6.0 Baseline 26.3
Baseline (6L) | 9.0 | 12.7 | 10.3 | 7.5 Pre-training | 25.4
Pre-training | 6.0 | 10.0 | 8.7 | 5.3

6 Conclusion

We presented two refinements to language adaptation using LFVs. By the pairwise combination
of outputs from the LSTM cells for each direction, we could improve the TER. In addition, pre-
training networks using phonetic targets does improve the performance for graphemic systems.
The networks first learn to discriminate phonetic features and are then able to learn pronuncia-
tion rules based on these features more easily. Future work includes additional optimization of
the network architecture and training strategies, as well as the expansion to more languages.
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