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ABSTRACT

Recently in automatic speech recognition (ASR) a lot of at-
tention has been given to decoding optimization to boost the
performance of connectionist temporal classification criterion
(CTC) systems in all neural setups. Different from that, we
investigated the use of the output of CTC network as input
features to traditional HMM/ANN hybrid systems. By doing
so, we benefit from the strengths of the CTC network at label
discrimination and the highly optimized decoding stack of
conventional hybrid systems. In a Switchboard setup, a feed-
forward network system using our proposed CTC-network
derived features with cross-entropy training outperforms a
strong CTC baseline by a margin of 5% rel. in word error
rate. With the same model, we achieved further improve-
ments of 9% rel. when combining them with bottleneck
features. Additionally, we revealed the possible elimination
of the blank label during decoding and the alignment rela-
tionship between the CTC model and the traditional HMM
system.

Index Terms— CTC, posterior probability, feature ex-
traction, feature combination

1. INTRODUCTION

The connectionist temporal classification criterion (CTC)
[1, 2] and its associated training methods have received sig-
nificant interest in speech recognition in recent years. Using
recurrent neural networks (typically long short-term memory
LSTM), CTC training can efficiently model the long-term de-
pendencies between a small number of units (e.g., phonemes
or characters) and speech frames. Utilizing the CTC opti-
mization criterion which handles possible alignments of the
units in a sequence label, CTC-based speech recognition
systems can be trained in a straight manner, thereby eliminat-
ing many complex steps in the conventional hybrid Hidden
Markov Modell / Artificial Neural Network (HMM/ANN)
speech recognition pipeline, such as the definition of an
HMM topology, finding context-dependent phonemes and
modeling units, and the frame-wise alignment of HMM states
and feature vectors. The way CTC was originally intro-
duced motivates the development of such speech recognition
systems in end-to-end fashion in which the language model

or a vocabulary can also be omitted. However, to achieve
state-of-the-art performance at par with the traditional hybrid
HMM/ANN approach, an efficient decoding algorithm that
uses additional knowledge sources (e.g., vocabulary, pro-
nunciation lexicon and language model) is still required to
transform the posteriors of the units modeled by the CTC
network into word sequences.

Because the training criterion of the CTC model is to
maximize the log posterior P (z|X) of the target label z
given acoustic features, it does not necessarily optimize the
final recognition when decoding with an additional language
model. To the best of our knowledge, a decoding with a
weighted finite state transducer (WFST) built over a pro-
nunciation lexicon and an n-gram language model applied
to CTC posteriors is still the most successful approach with
the best word error rate (WER). As observed in [3, 4], the
performance of a CTC system can be better than that of a
hybrid system trained with the cross-entropy criterion but is
less than that of a hybrid system optimized with sequence
training.

To benefit from the strengths of the CTC network at la-
bel discrimination on the one side and the highly optimized
decoding stack of conventional hybrid systems on the other
side, we investigate in this paper the use of CTC posterior
probabilities as input features in hybrid HMM/ANN system
to boost speech recognition performance.

2. RELATED WORK

In speech recognition, the posterior output of multiple-layer
perceptrons (MLP) was originally proposed as input features
to Tandem GMM models [5]. This approach of feature ex-
traction was enhanced by combining MLP features with the
original speech features [6]. Later, when the multiple HMM
states per phone [7] and context-dependent states were intro-
duced, bottleneck features [8], a small layer in the middle
of the MLP, was used for instead. Bottleneck features usu-
ally performed best when being concatenated with traditional
acoustic features in Tandem GMM systems [9, 10].

Our approach in this paper is similar to the Tandem ap-
proach as we also use the output of a neural network, an
LSTM in our case, as input features to an HMM based speech
recognition system, but it differs in that way that we use re-



current networks utilizing the CTC training criterion for creat-
ing the features, and that we are not training an HMM/GMM
model but an HMM/ANN model instead.

3. C-PHONE EXTRACTION

Assume that we use a set of labels L and we can always map
the ground-truth transcript of an utterance X into a label se-
quence z ∈ L∗ (L∗ meaning the Kleene closure over the al-
phabet L). A CTC path π (i.e., a sequence at frame level al-
lowing repeated labels) represents an alignment of z. Denote
yπt as the posterior probability that a recurrent neural network
model assigns to the corresponding label of π at time t. By
assuming the independent probabilities of all labels between
frames, the CTC objective function solves all possible align-
ments as:

P (z|X) =
∑
π

P (π|X) =
∑
π

∏
t

yπt

For model optimization, [1, 2] proposed to use the
forward-backward algorithm to maximize the likelihood of
all the transcripts given the speech utterances in a training
corpus. After training converges, we obtain an optimized
model to predict the posteriors yt of all labels at every time
frame t.

By using independent phones as the set of labels (e.g.,
45 English phones), we consider yt as a phone information
vector (so-called C-Phone) which indicates the occurrence of
the phones in the frames. Since the posterior probabilities
extracted from the softmax output usually have sharp distri-
bution [5, 6], we transform them to the log domain for better
modelling. During CTC training, the blank label must be in-
troduced to allow the optional occurrences of regular labels
in the alignments. The probability of the blank can be elimi-
nated, i.e. removed from the C-Phone, when extracting the C-
Phone vector since it does not map to any real acoustic event
and has little meaning.

Different from the extracted posterior features [5, 6]
or bottleneck features [8] where the extracting models are
trained with fixed Viterbi alignments (e.g., the model exactly
learns a feature transformation), C-Phone extraction is trained
without any prior alignment (the CTC model needs learns the
alignment by itself based on the label sequences). As ob-
served in [1, 11, 12], the posteriors produced by the CTC
model have peaky behaviors in which blank has the highest
probability in almost all frames, except for short peaks where
regular labels dominate. This raises the question whether the
phone probabilities assigned by the CTC model still correlate
to the fixed labels of a traditional Viterbi alignment. In this
study, we try to address this question by learning a feed-
forward network transformation to bridge between C-Phones
and the context-dependent phones labels in the conventional
HMM system set-up.

Fig. 1. Extracting and using C-Phone.

4. USING C-PHONE FEATURES

Figure 1 illustrates how we investigated the C-Phone features.
We trained a CTC system with an LSTM model for feature ex-
traction as explained in Section 3. The trained LSTM model is
then used to produce posterior vectors for every frame. These
posteriors are transformed into the log domain and the prob-
ability of the blank label is eliminated to form the final C-
Phone feature vectors. These features can be directly fed into
a feed-forward network model to build a conventional hybrid
HMM/ANN system. Furthermore, C-Phone features can also
be augmented with additional features such as network-based
bottleneck features.

5. EXPERIMENTAL SETUPS

Our experiments were conducted on the Switchboard-1 Re-
lease 2 (LDC97S62) training corpus which contains over 300
hours of speech. The Hub5’00 evaluation data (LDC2002S09)
was used as test set. We used a 4-gram language model which
was trained on the transcripts of the training data (3M words)
and the transcripts (22M words) from the Fisher English Part
1 (LDC2004T19) and Part 2 (LDC2005T19) corpora. We
further used the pronunciation dictionary that came with the
Switchboard Corpus.

All our systems were trained on the same training data and
use the same vocabulary and 4-gram language model. The
dictionary used for decoding includes 43 English phonemes
and 2 noise models. For the CTC training, blank is used as
additional label while for the hybrid HMM/ANN system we
use silence instead.

The CTC systems used for C-Phone extraction was
trained with Eesen [13]. We used a bi-directional LSTM
with 5 layers of 320 units, and a uni-directional LSTM con-
taining 640 units per layer (see Section 6.3). The training



schedule adopts an initial learning rate of 0.00004 for every
training. A decay with a factor of 4 was applied when the
cross validation error degraded after 12 epochs.

We used Janus Recognition Toolkit (JRTK) [14] to train
and decode the feed-forward neural network (FFNN) systems.
A FFNN architecture of 7 layers of 1600 units is used for all
hybrid HMM/ANN systems. The training of FFNN models
uses new bob learning rate schedule with an initial rate of
0.02.

Similar to other FFNNs, the bottleneck extraction network
is also trained on 11 frames of log mel filter-bank features
which are normalized per conversation. The bottleneck layer
contains 40 units which is the same as the number of filter-
bank coefficients. The extraction network also has 7 lay-
ers and the 2 last layers are removed after the training. A
feature-space Maximum Likelihood Linear Regression (fM-
LLR) transformation was estimated from the manual tran-
scripts during the training and from high-confidence decoding
transcripts during testing.

6. RESULTS

6.1. C-Phone Features

Table 1 compares the results of multiple systems using C-
Phone features against conventional hybrid systems with log
mel filter-bank (FBank), bottleneck features (BNF) and fM-
LLR features which are estimated on top of the BNF. For fair
comparison, all the systems share the same feed-forward neu-
ral network (FFNN) architecture for classifying 8000 context-
dependent phonemes on a fixed Viterbi alignment. We use
a popular FFNN as the baseline which was trained with the
cross-entropy criterion on 11 frames of FBank coefficients.
The referenced CTC system is trained using Eesen [13] and
also uses Eesen’s WFST functionality to decode on the same
posteriors as used for C-Phone extraction. The same 4-gram
language model is employed in all systems. The results are
reported on the full Hub5’00 test set. We noticed in our exper-
iments that our baseline CTC system performs slightly better
than a very similar system recently reported in [15].

We experimented with 3 variants of C-Phone features.
The first variant is the direct posterior probabilities (C-Phone-
P) while the second variant (C-Phone-L) is obtained after
transforming the softmax output to the log domain. The
third variant (C-Phone-NB) is the same as C-Phone-L before
eliminating the probability of the blank unit. In our setup,
the training of the FFNN systems on C-Phone-P features did
not converge. However when we switched to C-Phone-L or
C-Phone-NB, our training converges well for all inputs of
different context sizes and without applying further feature
normalization techniques.

Even when using only a singe C-Phone vector as input,
an FFNN can even be trained well. This reveals an addi-
tional aspect to the peaky behavior observed in CTC training

Model Features Window Hub5’e (SWB)
FFNN FBank 11 22.4 (15.8)
CTC FBank - 19.9 (14.1)

FFNN

C-Phone-P - -
C-Phone-L 1 19.3 (13.7)
C-Phone-L 7 19.0 (13.6)
C-Phone-L 11 18.9 (13.5)
C-Phone-L 15 19.3 (13.8)

C-Phone-NB 1 19.3 (13.8)
C-Phone-NB 7 19.0 (13.6)
C-Phone-NB 11 19.1 (13.6)

BNF 1 22.7 (16.0)
BNF 7 21.8 (15.3)
BNF 11 21.5 (15.1)
BNF 15 21.5 (15.1)

fMLLR-BNF 11 21.0 (14.6)

GMM
C-Phone-L 1 20.9 (15.7)
C-Phone-L 11 20.0 (14.5)

BNF 11 22.1 (15.7)

Table 1. Performance in word error rate (WER) of multiple
HMM/ANN systems with different input features such as C-
Phone, FBank, BNF, and fMLLR-BNF

[1, 11, 12], e.g., even for the frames when no (regular) la-
bel has its peak probability, the posteriors vector still contains
meaningful information for classifying phonemes (or even
context-dependent phonemes) labeled in the fixed alignment
manner.

Interestingly, the performance of the systems with C-
Phone-L and C-Phone-NB are almost identical for the same
configurations. This may indicate that the probability of the
blank does not carry any useful information for phoneme
classification, and thus can be eliminated during decoding.
This observation consolidates the identification in [16].

In terms of word error rate (WER), the FFNN systems
trained on C-Phone outperform FBank by a large margin
(15.6% rel.) and clearly improve over the other network-
based extracted features such as BNF or fMLLR. The im-
provement of stacking longer context of C-Phone vectors
appears small but is still effective. The extracted C-Phone
features also show their usefulness over other features when
switching to GMMs instead of FFNNs.

In our experiments, the FFNN systems trained on the C-
Phone outperform the referenced CTC system even when us-
ing only one feature verctor per frame. It is worth noting
that the superior performance of the FFNNs is observed here
with cross-entropy training (further improvement is expected
when optimizing the FFNNs with sequence training). This
result can be explained by either the introduction of context-
dependent phonemes, that helps improving the classification,
or by the current decoding approach of the CTC system not
being as good as that of conventional HMM system.



6.2. Feature Stream Combination

As shown in Section 6.1, C-Phone is a compact vector which
contains excellent features for phonemes classification. As
a typical approach of feature engineering, one can wonder
if the recognition performance can be further improved by
combining additional features to C-Phone. In this section,
we investigate the combination of C-Phone and FBank, BNF
and fMLLR features. Table 2 presents the results of differ-
ent combinations. We report only with C-Phone-L features
but other variants have the same results. The Window column
shows the number of consecutive C-Phone vectors and addi-
tional feature vectors (+Feature) fed into the FFNNs. Basi-
cally, we allow only two different input streams and the center
of the context window is always the current frame.

+Features Window Hub5’e (SWB)

FBank

1/1 23.0 (17.7)
3/3 18.9 (13.6)
5/5 19.1 (13.7)
1/5 19.1 (13.7)

BNF

1/1 18.4 (13.1)
2/2 18.2 (12.9)
3/3 18.4 (13.1)
5/5 18.6 (13.3)
1/5 18.5 (13.1)

fMLLR-BNF

1/1 18.1 (12.8)
2/2 18.2 (13.0)
3/3 18.2 (13.1)
5/5 18.3 (13.2)
1/5 18.2 (12.9)

Table 2. Results in WER of different feature combinations.

Combining C-Phone with FBank features has almost the
same result as using single C-Phone features. This result is
different from [6] where the combination of PLP features and
their derived multiple layer perceptron (MLP) features gave
improvements. This indicates that C-Phone does not need the
complementary information from the original speech features
for phoneme classification.

We found that the other network-based extracted features
such as BNF features can supplement C-Phone and result in
a better recognition performance (4.2% rel.). This can be ex-
plained by the fact that BNF which is extracted from a wide
context window contains additional information for context-
dependent phoneme classification.

When transforming BNF into the fMLLR feature space
which has less speaker variability, we achieved remarkable
result (see Table 1). However, the recognition performance
stays more or less the same when combining with C-Phone
with BNF or fMLLR features. This observation can be ex-
plained as the analysis in [6] where the extracted posteriors
features reduce the variation among speakers, and thus have
similar effects as fMLLR.

In many modern speech recognition systems, i-vector [17]
which contains the information about the speaker and envi-
ronment in a short vector usually helps supplementing the
traditional features such as FBank or fMLLR [18, 19] in a
speaker adaptation manner. Unfortunately, we was not able
to provide results with i-vector adaptation due to our i-vector
training setup could not employ Switchboard (or also Fisher)
corpus to produce efficient i-vectors. We also found the same
observation as reported in [20].

6.3. Using Uni-directional LSTM

So far for all the results, we used the bi-directional LSTM to
train C-Phone extraction. However the bi-directional LSTM
structure which requires the temporal context of a whole ut-
terances is not an optimal choice for real-time and low latency
applications. In Table 3, we present the results of the systems
using the C-Phone features which are extracted from a uni-
directional LSTM. Switching to the uni-directional structure,
the performance of the CTC system and the FFNN with C-
Phone features degrades severely (20% and 26% rel.) and
becomes lower than that of the conventional FFNN system.
We only achieve some small improvement (3.2% rel.) when
using C-Phone to complement the bottleneck features.

Model +Features Window Hub5’e (SWB)
CTC - 25.4 (17.8)

FFNN

1 35.4 (28.2)
11 25.5 (18.6)

FBank 2/2 25.4 (18.8)
FBank 3/3 24.8 (18.2)
BNF 1/1 21.9 (15.8)
BNF 2/2 21.2 (15.3)
BNF 3/3 21.0 (15.0)

Table 3. Results of the systems using C-Phone extracted from
uni-directional LSTM.

7. CONCLUSION AND FUTURE WORK

We have investigated the use of the posterior probabilities
extracted from a CTC network as features in a conventional
hybrid HMM/ANN speech recognition system. Our experi-
ments show that the extracted posteriors are excellent features
for content-dependent phonemes classification and speech
recognition. While we experimented only with a phone set as
CTC labels, future work can explore the performance of dif-
ferent label sets. We are also going to examine the gain when
performing sequence training as well as the performance of
the presented systems on different training data sets.
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