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ABSTRACT 

This paper describes a novel connectionist system for dialog 
processing. Based on a script-like formalism, the system consists 
of several modular neural networks which can track the semantic 
flow of a dialog. The system can be extended to understand and 
translate dialogs in a certain domain. 

1. INTRODUCTION 

Connectionist models appear to be an attractive framework 
for natural language processing and high level cognitive process- 
ing. Their ability to manipulate symbols through a time sequence 
makes it possible to process languages; Their ability to integrate 
multiple constrained sources of information provides an effective 
formalism for natural language processing, which involves the 
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Recently there has been a lot of work on connectionist 
models for natural language processing: language acquisition 
modeling[ 1][2], connectionist parser construction[3], semantic 
structure analysis[4][5], etc. A modular connectionist architec- 
ture for paraphrasing script-based stories has been described in 
[6], which combined different neural network modules for vari- 
ous tasks of parsing, semantic analysis and text generation. It has 
explicit representations for syntactic and semantic structures of 
sentences. 

To process a loosely structured language like spoken language, 
we propose a more flexible model. In our model there is no 
predefined syntactic or semantic structure. The model develops 
by itself a suitable representation of structures and meaning. This 
enables the model to cope with languages with loose structures 
effectively. Our system does not have separated syntactic and 
semantic passes either, which allows us to take full advantage of 
neural networks' ability to integrate multiple constraints. 

The model can track the semantic flow of a dialog in a specific 
domain, e.g. Conference Registration. With some changes to 
the basic structure, the model can perform other natural language 
processing tasks, such as dialog translation. 
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Figure 1: Architecture of the model 

The SA fulfills the task of tracking the semantic flow of dialogs. 
The inputs to the SA are sentence representations, and the outputs 
from the SA are local representations of the semantic categories 
(also known as script slots or topics) of the sentences within a 

The SA works in a way similar to the SRG. At time t ,  it ac- 
cepts the representation of the I th sentence of a dialog (obtained 
from the SRG), along with the context information from the hid- 
den layer at time t-1 as inputs; its output specifies the semantic 
category (or topic) of the input sentence in that context with the 
corresponding output unit being active. However, in the SA’s 
output representation, only one unit is active. As the topic of 
the dialog changes, the “state” of the dialog will change and the 
corresponding output units will flip. 

dialog. 

Information Extractor (IE) 
In order to understand a dialog, the model should be able to 

acquire specific information other than the semantic category of 
a sentence. It should be able to locate and remember the specific 
information like the caller’s name, the application fee, etc., men- 
tioned in the dialog. The third network, the Information Extractor 
(IE) is introduced for this purpose. 

The IE is independent from the other two networks. It takes 
sequential word patterns as inputs, and activates a specific unit 
in the output layer if the input word is the corresponding specific 
information. For example, if the input word is John, then the 
FirstName unit is activated in the output layer. The output here 
is a local representation similar to that of the SA, except that the 
output here may not have any active unit. 

3. THE TRAINING OF THE NETWORKS 

The two-leveled architecture (SRG and SA) makes the sentence 
representation transparent to users, while allowing dialog flow 
tracking based on high-level semantic information. It is trained 
in two stages: the training of the SA and the training of the SRG 
thereafter. 

The SA is trained first. Initially each sentence in the train- 
ing set is represented by a random pattern. An extended back- 
propagation procedure[7] is then used to modify the weights of 
the SA us well us its input sentence representation. In a sample 
dialog, the representation of a sentence is fed to the network as 
input, and all the context units are set to zero initially. A forward 
pass is performed and the mean square error at the output is calcu- 
lated. The error is back-propagated, and the weights are modified 
with gradient descent. The error is however backpropagated one 
layer further than in the standard backpropagation algorithm to 
the virtual input layer[7] to modify the weights of the connections 
between the virtual input layer and the SA’s input layer. In this 
way, the representation of the SA’s input pattern is modified dur- 
ing the backward pass. The process is repeated for all sentences 
in the dialog with the context units always set the activations of 
the hidden units in the previous step. The network is trained with 
all the sample dialogs for several epochs until the final output 
error of each dialog is less than a certain threshold. The final 
representations of the sentences in the sample dialogs can then be 
used as the targets for the training of the SRG. 

The training for the SRG could be performed in a similar way. 
At present, however, the input feature patterns of words are al- 
ready hand-coded, so it is not necessary to train the word represen- 
tations. We use standard backpropagation to train this network, 
with the sequence of word feature patterns presented at the input 
one at a time, and with the pattern of that sentence (developed 
from the training of the SA) as the target output. 

Several measures have been taken during the training to im- 
prove the performance of the SRG. 

3.1. Sample Balance 
One problem which affects the performance of the SRG is that 
sentences in the sample file are not we11 balanced: the sentence 
length varies from 1 word to 21 words. In some case, more than 10 
sentences have the same or a similar representation, while some 
sentences are represented by unique patterns of their own. This 
makes it hard for the SRG to generate the sentence representa- 
tion of all the sentences accurately: the network is trained over 
more backpropagation passes in generating the representations of 
long sentences or the representations shared by many sentences, 
whereas the network is inadequately trained to generate an accu- 
rate representations of the short sentences or those shared by few 
sentences. This causes a performance imbalance for the SRG. 

To solve this problem, we have normalized the leaming rates 
for different sentences: for long sentences with representations 
shared by many other sentences, we use small learning rates, for 
short sentences with representations shared by few sentences, we 
use large leaming rates. The following formulais used to calculate 
the learning rate for sentence si with the representation r,: 
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Where 6 is the overall learning rate, f ,  is the learning rate for 
sentence s,, 1, is the the number of words in s,, and nl is the 
number of sentences with representations similar to r,. 

3.2. Noise and Recu 
Because of the the limited amount of training data, the SRG may 
overfit to the initial words in a sentence. For example, in our 
conference registration task, when the SRG encounters the input 
words I ,  would and like, it will immediately posit that the sentence 
is I would like to register for the conference, and generate the 
representation of that sentence, since there is no other sentences 
in the sample file begining with I would like. This causes the 
system to be excessively sensitive to the noise in the begining of 
a sentence, and makes it hard to train the SRG incrementally for 
new sentences with the same initial words. 

We have taken the following measures to overcome this prob- 
lem: 

Introducing noise words in the sample sentences: Noise 
words are randomly chosen from the lexicon, and substi- 
tuted at random for the actual words of the sentence. NO 
noise words are added to short sentences with fewer than 4 
words. The number of noise words is randomly chosen, with 
the maximum determined by the length of the sentence. 

hts from context units (recurrent units) to hid- 
den units: In doing so, initial words in a sentence no longer 
dominate in their effect on the final representation of that 
sentence, Instead, the SRG generates the representation ac- 
cording to the relevance of the words in a sentenc 

4. PERFORMANCE AND EVALUATION 

The system is evaluated on the Conference Registration task. 
The dialogs of this task cover 5 semantic categories, namely Greet- 
ing, Asking for Registration Form, Requesting CaMer’s Informa- 
tion, Information about Registration Fee and Bidding Farewell. 
There are about 60 different sentences in the training file. The 
lexicon consists of 435 words. 

The SA network has 30 input units for the sentence repre- 
sentation, 10 context units, 10 hidden units and 5 output units 
representing the 5 semantic categories. The SRG network con- 
sists of 26 input units (each word has 26 features), 16 hidden units, 
16 recurrent units and 30 sentence representation output units. 

The SA and the SRG are trained separately and then combined 
to track the semantic flow of dialogs. It is also possible to train the 
two networks together as a big network for several epochs after 
each of them has been trained separately. This final tuning might 
be helpful in improving the performance of the system[9]. 

The system achieves 100% accuracy on the training set of di- 
alogs and 95% accuracy on the testing set of 15 dialogs containing 
246 sentences. 

4.1. Ambiguous Sentences 
Sentences like “I understand”, “Yes, that’s right” and “Thank you 
very much” can occur in almost every category. The networks 
can however classify these sentences into the correct semantic 
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Figure 2: Architecture of the translation networks 

sufficient for dialog tracking. Two sentences which occur typi- 
cally in the same dialog category are usually represented by sim- 
ilar sentence pattems and it becomes impossible to discriminate 
between them. 

To overcome this problem, we introduce another sentence rep- 
resentation as a complement to the previous one to distinguish 
the different sentences in the same semantic category of a di- 
alog. This additional module uses 20 bit pattems to represent 
sentences, which can be obtained from another SRG, and is fed 
to the translation network as input (the shadowed part in Fig. 2 ). 

The development of sentence representation 2 is similar to that 
of sentence representation 1: initially it is randomly generated 
for the sentences input to the translation network. During the 
training of the translation network, it is modified with extended 
back propagation. The final representation is used as target for 
the training of the SRG2. 

With the same test dialogs as those for dialog state tracking, 
the networks have been able to translate the sentences with 98% 
accuracy in semantic sense. This accuracy is higher than that 
of dialog tracking. This is because that the additional sentence 
representation helps to remove the errors in dialog tracking. 

6. SUMMARY 

The connectionist model for dialog processing described here 
can track semantic flow and perform simple dialog translation ef- 
ficiently as demonstrated in a domain of conference registration 
dialogs. In this model, words and sentences are represented as 
distributed pattems of activation. The representations for sen- 
tences are “hidden” and emerge during training with extended 
backpropagation. A modular network architecture is used, with 

each module fulfilling a sub-task of language understanding. 
In contrast with other more conventional models for language 

processing, this model automatically “leams” from examples and 
has no separate syntactic and semantic passes. Instead, it treats 
syntax and semantics as integrated constraints for the same cog- 
nitive tasks. In doing so, i t  avoids explicit hand coded represen- 
tations of syntactic and semantic structures. These advantages 
might be particularly useful in dealing with the variability and 
noise typical for ill-formed automatically recognized spoken dia- 
log utterances. 
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