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ABSTRACT 

We present a large vocabulary, continuous speech recognition 
system based on Linked Predictive Neural Networks (LPNN’s). 
The system is a straightforward extension, from isolated to contin- 
uous speech, of the LPNN system presented last year. The system 
uses neural networks as predictors of speech frames, yielding 
distortion measures which can be used by the One Stage DTW 
algorithm to perform continuous speech recognition. The sys- 
tem currently achieves 95%, 58%, and 39% word accuracy on 
tasks with perplexity 7, 11 1, and 402 respectively, outperforming 
several simple HMMs that we tested. We also found that the 
accuracy and speed of the LPNN can be slightly improved by the 
judicious use of hidden control inputs. We conclude by discussing 
the strengths and weaknesses of the predictive approach. 

I. INTRODUCTION 

Neural networks are proving to be useful for difficult tasks 
such as speech recognition, because they can easily be trained 
to compute smooth, nonlinear, nonparametric functions from any 
input space to any output space. In speech recognition, the func- 
tion most often computed by networks is classifrcation, in which 
spectral frames are mapped into a finite set of classes, such as 
phonemes. In theory, classification networks approximate the 
optimal Bayesian discriminant function [l], and in practice they 
have yielded very high accuracy [2, 3.41. However, integrating 
a phoneme classifier into a speech recognition system is nontriv- 
ial, since classification decisions tend to be binary, and binary 
phoneme-level errors tend to confound word-level hypotheses. 
To circumvent this problem, neural network training must be 
carefully integrated into word level training [ l ,  53. An altema- 
tive function which can be computed by networks i s  prediction, 
where spectral frames are mapped into predicted spectral frames. 
This provides a simple way to get non-binary distortion measures, 
with straightforward integration into a speech recognition system. 
Predictive networks have been used successfully for small vocab- 
ulary [6 ,7]  and large vocabulary [8] speech recognition systems. 
In this paper we extend our large Vocabulary isolated word recog- 
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nition system [8] to continuous speech. We describe 
of our experiments, and discuss the strengths and weaknesses of 
our current approach. 

II. LINKED PREDICTIVE NEURAL NETWORKS 

Linked Predictive Neural Networks have been described in 

The LPNN system is based on canonical phonem 
detail in [8]. Here we present a brief review. 

which can be logically concatenated in any order (using a “linkage 
pattem”) to create templates for differe 
LPNN suitable for large vocabulary reco 

Each canonical phoneme is modeled 
in an HMM. And each state (i.e., phone model) is implemented 
by a predictive neural network. Each of these networks is trained 
to accurately predict the next frame of speech, within segments 
of speech corresponding to its phone model; the predictions will 
be less accurate in uncorrelated segments of speech. Hence, 
phonemes are “recognized” indirectly, by virtue of the relative 
accuracies of the different predictive networks in a given segment 
of speech. Note, however, that phonemes are not classified at 
the frame level. Instead, continuous scores (prediction errors) are 
accumulated for various word candidates, and a decision is made 
only at the word level, where it is finally appropriate. 

. . . . . . . . . . .  

. . . . . . . . . . . . . 

Figure 1: The backward pass during training. 

The LPNN training algorithm consists of three steps: a forward 
pass, an alignment step, and a backward pass. Suppose we are 
given a training utterance and its phonetic spelling (or linkage 
pattem). Figure 1 shows / B A /  as a typical example. In the 
forward pass, all the networks make their predictions in parallel 
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for each frame of speech, and the prediction errors are routed 
through the linkage pattem, yielding a prediction error matrix. 
Next, the DTW algorithm is applied to this matrix, to find the 
optimal alignment path between the input speech and the sequence 
of predictors. Finally, in the backward pass (shown in Figure l), 
error is backpropagated into the associated network at each point 
along the alignment path. Hence backpropagation causes the 
nets to become better predictors, and the alignment path induces 
specialization of the networks for different phonemes. During 
testing, isolated word recognition is performed by finding the 
word candidate with the minimum DTW score. 

IIa. Extension to Continuous Speech 
During the past year we extended the LPNN to deal with continu- 
ous speech. In the continuous LPNN, the training procedure is the 
same as before, since the phonetic spelling of the entire utterance 
is known. Testing, however, becomes more complicated, because 
word boundaries must be located while words are matched within 
those boundaries. To solve this compound problem, we use an 
efficient extension of DTW, the One Stage algorithm [9], which 
jointly optimizes the segmentation and the word matches, yielding 
a complete sentence hypothesis. Transitions between words can 
be further constrained by using a word-pair or bigram grammar, 
derived from the training corpus. 

During training, the need for labeled data can be reduced or 
eliminated, by first bootstrapping the networks on a small amount 
of speech with forced phoneme boundaries, and then training on 
the whole database with looser alignment constraints, e.g., us- 
ing only forced word boundaries, or no forced boundaries at all. 
Since less constraint implies more search, we usually strike a 
computational balance between these latter possibilities by train- 
ing with forced alignment on “loose” word boundaries, located by 
dithering the word boundaries obtained from an automatic label- 
ing procedure (based on Sphinx [ lo]), in order to optimize those 
word boundaries for the LPNN system. 

Perplexity 
Substitutions 
Deletions 

III. RECOGNITION EXPERIMENTS 

We have evaluated the LPNN system on a databaye of con- 
tinuous speech recorded at CMU. The database consists of 204 
English sentences using a vocabulary of 402 words, comprising 
12 dialogs in the domain of conference registration. A typical 
sentence is “Okay, then I’ll send you a registration form.” The 
average sentence length is 8 words; the maximum is 15 words. 
Training and testing versions of this database were recorded with a 
close-speaking microphone in a quiet office by multiple speakers 
for speaker-dependent experiments. Recordings were digitized at 
a sampling rate of 16 KHz. A Hamming window and an FFT were 
computed, to produce 16 melscale spectral coefficients every 10 
msec. 

In our experiments we used 40 context-independent phoneme 
models (including one for silence), each of which had the topol- 
ogy shown in Figure 2. In this topology, similar to the one used 
in the SPICOS system [l 11, a phoneme model consists of 6 states, 
economically implemented by 3 networks covering 2 states each, 
with self-loops and a certain amount of state-skipping Glowed. 
This arrangement of states and transitions provides a tight tem- 
poral framework for stationary and temporally well structured 

speaker A speaker B 
7 1 1 1  402 7 1 1 1  402 
1% 28% 43% 4% 28% 46% 
1% 8% 10% 2% 12% 14% 

Net1 I Net2 I Net3 

Insertions 
Word Accuracy 

Figure 2: The LPNN phoneme model. 

1% 4% 6% 0% 4% 3% 
97% 60% 41% 94% 56% 37% 

phones, as well as sufficient flexibility for highly variable phones. 
Because the average duration of a phoneme is about 6 frames, we 
imposed transition penalties to encourage the alignment path to 
go straight through the 6-state model. Transition penalties were 
set to the following values: zero for moving to the next state, s 
for remaining in a state, and 2s for skipping a state, where s was 
the average frame prediction error. Hence 120 neural networks 
were evaluated during each frame of speech. These predictors 
were given contextual inputs from two past frames as well as 
two future frames. Each network had 12 hidden units, and used 
sparse connectivity, since experiments showed that accuracy was 
unaffected while computation could be significantly reduced. The 
entire LPNN system had 41760 free parameters. 

Since our database is not phonetically balanced, we normalized 
the learning rate for different networks by the relative frequency of 
the phonemes in the training set. During training the system was 
bootstrapped for one iteration using forced phoneme boundaries, 
and thereafter trained for 30 iterations using only loose word 
boundaries from canonical word pronunciations. 

4 W l ”  .,I. .I,- .U 

Figure 3: Actual and predicted spectrograms. 

Figure 3 shows the result of testing the LPNN system on a 
typical sentence. The top portion is the actual spectrogram for 
this utterance; the bottom portion shows the frame-by-frame pre- 
dictions made by the networks specified by each point along the 
optimal alignment path. The similarity of these two spectrograms 

Table 1: LPNN performance on continuous speech. 
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indicates that the hypothesis forms a good acoustic model of the 
unknown utterance (in fact the hypothesis was correct in this case). 

Speaker-dependent experiments were performed under the 
above conditions on two male speakers, using various task per- 
plexities (7, 11 1, and 402). Results are summarized in Table 1. 

IV. COMPARISON WITH HMMs 

In order to confirm that the predictive networks were making 
a positive contribution to the overall system, we performed a 
set of comparisons between the LPNN and several pure HMM 
systems. In experiment El we replaced each predictive network 
by aunivariate Gaussian whose mean was determined analytically 
from the labeled training data, and whose variance was unity, 
resulting in 16 free parameters per PDF. In experiment E2, the 
variances were also computed, resulting in 32 free parameters 
per PDF. In experiment E3, the mean was computed for delta 
coefficients as well (from t-2 and t+2), and the variances were 
again set to unity, resulting in 32 free parameters per PDF. Each 
experiment used speaker A, with task perplexity 11 1. Results are 
summarized in Table 2. As can be seen, each of these simple 
HMMs had a lower accuracy than the LPNN (which had 60% 
accuracy). 

n Experiment 
11 Substitutions 

I E l  I E2 1 E3 1 
141% 135% 1 30% I] 

Deletions 
Insertions 

Table 2: HMM performance (speaker A, perplexity 11 1). 

V. HIDDEN CONTROL EXPERIMENTS 

In another series of experiments, conducted under other con- 
ditions, we varied the LPNN architecture by introducing hidden 
control inputs, as proposed by Levin [7]. Figure 4 shows three 
architectures used in our comparative study. The first is a basic 
LPNN (no hidden control), in which P x N = 80 networks are 
required to represent P = 40 phonemes with N = 2 states each. In 
(b), hidden control inputs were introduced such that only P = 40 
networks are required for the same task: each phoneme is mod- 
eled by a single network modulated by N hidden control input bits 
which distinguish the state using a thermometer representation. 
In (c), the hidden control idea is taken to its limit: one big network 
is modulated by P x N hidden control inputs which specify both 
the phoneme and the state. 

A theoretical advantage of hidden control architectures is that 
they reduce the number of free parameters in the system. As 
the number of networks is reduced, each one is exposed to more 
training data, and - up to a certain point - generalization may 
improve. The system can also run faster, since partial results 
of redundant forward pass computations can be saved. (Notice, 
however, that the total number of forward passes is unchanged.) 
Finally, the savings in memory can be significant. 

Table 3 shows the results of our experiments. Speaker B was 
used in these tests; we repeat that these tests used a 2-state, rather 
than a 6-state, phoneme topology. Besides testing continuous 

mudictions 

speech 
frames 

(b) HC-LPNN: 
40 nets 

I 
'Hidden Control Input State 

h 
HC-LPNN: 
1 net UII 

Hidden Control input I State 

Figure 4: Architectures used in Hidden Control experiments. 

speech recognition, we also tested excerpted word recognition, in 
which word boundaries within continuous speech are given; this 
allowed us to compare the acoustic discriminability of the three 
architectures more directly. 

As the table shows, we observed minor differences in perfor- 
mance between architectures (a) and (b): the LPNN was slightly 
more discriminant, but the hidden control architecture generalized 
better and ran faster. Meanwhile, architecture (c) did very poorly, 
presumably because it had too much shared structure and too few 
free parameters, overloading the network and causing poor dis- 
crimination. Hence, hidden control may be useful, but only if it 
is used carefully. 

. 
Table 3: Results of Hidden Control experiments. 

VI. CURRENT LIMITATIONS OF PREDTCTIVE 
NETWORKS 

While the LPNN system is good at modeling the acoustics of 
speech, it presently tends to suffer from poor discrimination. In 
other words, for a given segment of speech, all of the phoneme 
models tend to make similarly good predictions, rendering all 
phoneme models fairly confusable. For example, Figure 5 shows 
an actual spectrogram and the frame-by-frame predictions made 
by the /eh/ model and the /z/ model. Disappointingly, both models 
are fairly accurate predictors for the entire utterance. 

ach predictor receives training 
in only a small region of input acoustic space (i.e., those frames 
corresponding to that phoneme). Consequently, when a predictor 

This problem arises becau 
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/eh/ 

121 

Figure 5: Actual spectrogram, and corresponding predictions by 
the /eh/ and /z/ phoneme models. 

is shown any other input frames, i t  will compute an undefined 
output, which may overlap with the outputs of other predictors. 
In other words, the predictors are currently only trained on positive 
instances, because it is not obvious what predictive output target is 
meaningful for negative instances; and this leads to problematic 
“undefined regions” for the predictors. Clearly some type of 
discriminatory training technique should be introduced, to yield 
better performance in prediction based recognizers. 

VII. CONCLUSION 

We have studied the performance of Linked Predictive Neural 
Networks for large vocabulary, continuous speech recognition. 
Using a 6-state phoneme topology, without duration modeling 
or other optimizations, the LPNN achieved an average of 95%, 
58%, and 39% accuracy on tasks with perplexity 7, 11 1, and 402, 
respectively. This was better than the performance of several sim- 
ple HMMs that we tested. Further experiments revealed that the 
accuracy and speed of the LPNN system can be slightly improved 
by judicious use of hidden control inputs. 

The main advantages of predictive networks are that they pro- 
duce non-binary distortion measures in a simple and elegant way, 
and that by virtue of their nonlinearity they can model the dynamic 
properties of speech (e.g., curvature) better than linear predictive 
models [12]. Their main current weakness is that they have poor 
discrimination, since their strictly positive training causes them all 
to make confusably accurate predictions in any context. Future re- 
search should concentrate on improving the discriminatory power 
of the LPNN, by such techniques as corrective training, context 
dependent phoneme modeling, and function word modeling. 
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