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Abstract 

Speaker normalization may have a significant impact on both speaker- 
adaptive and speaker-independent speech recognition. In this paper, a codeword- 
dependent neural network (CDNN) is presented for speaker normalization. The 
network is used as a nonlinear mapping function to transform speech data be- 
tween two speakers. The mapping function is characterized by two important 
properties. First, the assembly of mapping functions enhances overall map- 
ping quality. Second, multiple input vectors are used simultaneously in the 
transformation. This not only makes full use of dynamic information but also 
alleviates possible errors in the supervision data. Large-vocabulary continuous 
speech recognition is chosen to study the effect of speaker normalization. Us- 
ing speaker-dependent semi-continuous hidden Markov models, performance 
evaluation over 360 testing sentences from new speakers showed that speaker 
normalization significantly reduced the error rate from 41.9% to 5.0% when 
only 40 speaker-dependent sentences were used to estimate CDNN parameters. 

1. INTRODUCTION 

Nonlinear mapping of two different observation spaces is of great interest for both 
theoretical and practical purposes. In the area of speech processing, nonlinear map- 
ping has been applied to speaker normalization [3,14,4,15,6], noise enhancement 
[2,21], articulatorymotion estimation [18,10], and speech recognition 191. Recently, 
nonlinear mapping based on neural networks has attracted considerable attention be- 
cause of the ability of these networks to optimally adjust the parameters from the 
training data to approximate the nonlinear relationship between two observed spaces. 
In speech recognition, speaker variability is one of the major error sources. For ex- 
ample, the error rate of speaker-dependent speech recognition is typically two to 
three times less than that of speaker-independent speech recognition [7]. To model 
speaker variability, use of either speaker clustered models [7], or speaker normal- 
ization may improve the performance of speaker-independent speech recognition. 
However, the latter can provide a more compact representation than the former. 
In addition, speaker normalization can be used to rapidly adapt speaker-dependent 
models for the new speaker as well as voice conversion for text-to-speech systems 
VI. 
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In this paper, a codeword-dependent neural network (CDNN) is presented for 
speaker normalization. The network is used as a nonlinear mapping function to 
transform speech data between two speakers. The mapping function is characterized 
by two important properties. First, the assembly of mapping functions enhances 
overall mapping quality. Second, multiple input vectors are used simultaneously in 
the transformation. This not only makes full use of dynamic information but also 
alleviates possible errors in the supervision data. 

Based on the DARPA Resource Management task [ 171, large-vocabulary (1000 
words) continuous speech recognition was chosen to study the effect of speaker nor- 
malization. Speaker-dependent semi-continuous hidden Markov models (SCHMM) 
[7] were estimated from 2400 sentences (the RM2 training set) [16]. Based on 
the speaker-dependent SCHMM of one speaker, performance evaluation over 360 
testing sentences from the rest of speakers (three speakers) in the RM2 corpus was 
carried out. Without speaker normalization, the error rate was 41.9% for cross 
speaker speech recognition. When 40 speaker-dependent adaptation sentences were 
used, the error rate was reduced to 6.8% based on a single neural network for each 
new speaker. The CDNN further reduced the error rate from 6.8% to 5.0%. Overall, 
the error rate was comparable to that of speaker-independent speech recognition on 
the same testing data. 

2. NEURAL NETWORK ARCHITECTURE 

2.1. General Principal 

Speaker normalization involves acoustic data transformation from one speaker to 
another. In general, let X" = x;, x;, . . .x; be a sequence of observations at time 1,2, .. 
t of speaker a. Here, each observation at time R (a frame), xi ,  is a multidimensional 
vector, which usually characterizes some short-time spectral features. For speech 
observations X" of speaker a, our goal is to find a mapping function F ( X ' )  such 
that 3( X u )  resembles the observation sequences producedby the reference speaker. 

Speaker variations include many factors such as sex, vocal tract, pitch, speaking 
speed, intensity, and cultural differences. Unfortunately, given two different speak- 
ers, there is no simple mapping function that can account for all these variations. 
At a given time t ,  x; usually represents some spectral features for the speaker a. 
In this study, we are mainly concerned with spectral normalization, i.e, to find out 
a mapping function to transform xa so that the normalized observation sequence of 
speaker a resembles that of the corresponding phonetic realization of speaker b ,  xb. 
Thus, one of the objective functions is to minimize: 

( F ( X P )  - Xb)? (1) 
corresponding pairs 
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Neural networks can be used to approximate any nonlinear mapping function 
[13]. To be useful for speaker normalization, a layered feedforward neural networks 
should have a number of features. First, we should have sufficient interconnections 
between multiple layers and sufficient connections between units in each of these 
layers so that the mapping network will have the ability to learn complex nonlinear 
mapping functions between different speakers. Second, as the neural network is 
suitable only to a small or medium task, the original acoustic space should be 
partitioned into different prototypes such that each network only performs its own 
work within the corresponding region. 

2.2. Neural Network Topology 

It has been found that dynamic information plays an important role in speech recog- 
nition [I 1,8] As frame to frame normalization lacks use of dynamic information, 
the architecture of normalization network is thus chosen to incorporate multiple 
neighboring frames. One such architecture is shown in Figure 1. Here, the current 

normalized frame 

'*a,.,, ,**d 'a...., ,,.*a**' 'a U,,' ,*.****' 

previous frame current frame next frame 
w 

Figure 1: A normalization neural network. 

frame and its left and right neighboring frames are fed to the multi-layer neural 
network as inputs. The network output is a normalized frame corresponding to the 
current input frame. By using multiple input frames for the network, the important 
dynamic information can be effectively used in estimating network parameters and 
in normalization. 

If the dimension of observation space is d and the number of input frames is 
m, we will have dxm input units in the normalization network. This will definitely 
increase the number of free parameters in the network. Although the increase 
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in the number of free parameters lead to quick convergence during training, this 
nevertheless may not lead to improved generalization capability. Since the network 
is designed to normalize new data from a given speaker to the reference speaker, 
good generalization capability will be the most important concern. 

2.3. Codeword-Dependent Neural Network 

When presented with a large amount of training data, a single network is often unable 
to produce satisfactory results during training as each network is only suitable to a 
relatively small task. To improve the mapping performance, breaking up a large task 
and modular construction are usually required [22,5]. As the nonlinear relationship 
between two speakers is very complicated, a simple network may not be powerful 
enough. One solution is to partition the mapping spaces into smaller regions, and 
to construct a neural network for each region as shown in Figure 2. As each neural 

output switch 
speech P -7: Input speech 

Figure 2: An assembly of neural networks, 

network is trained on a separate region in the acoustic space, the complexity of the 
mapping required of each network is thus reduced. In Figure 2, the switch can be 
used to select the most likely network or top N networks based on some probability 
measures of acoustic similarity. Functionally, the assembly of networks is similar to 
a huge neural network. However, each network in the assembly is learned indepen- 
dently with training data for the corresponding regions. This reduces the complexity 
of finding a good solution in a huge space of possible network configurations since 
strong constraints are introduced in performing complex constraint satisfaction in a 
massively interconnected network. 

Vector quantization (VQ) has been widely used for data compression in speech 
and image processing. Here, it can be used to to partition original acoustic space 
into different prototypes (codewords). This partition can be regarded as a procedure 
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to perform broad-acoustic pattern classification. The broad-acoustic patterns are au- 
tomatically generated via a self-organization procedure based on the LBG algorithm 
W I .  

When the codeword-dependent neural network (CDNN) was constructed from 
the data in the corresponding cell, it was found that learning for the CDNN converges 
very quickly in comparison with a huge neural network. The larger the codebook, 
the quicker it converges. However, the size of codebook relies on the number of 
available training data since codeword-dependent structure fragments training data. 
The size of codebook should be determined experimentally. 

2.4. Modifications to Sigmoid Functions 

The basic unit used in many neural networks computes the weighted sum of its 
inputs and passes this sum through a nonlinear function such as a threshold or 
sigmoid function [ 191 as: 

1 
1 + e-" 

sigmoid(z) = - 

In the standard sigmoid function, the output dynamic range is between 0 and 1. If 
the mapping function input and output are out of this range, feature conditioning 
is generally required. However, if speaker normalization is applied to speaker 
adaptation, the original acoustic data can not be conditioned. Because of this, all the 
output units in the network are not associated with any sigmoid function. Instead, 
the linear function is used. In addition, the sigmoid function is generalized as: 

Using SIGMOID function, the dynamic range and the shape can be easily con- 
trolled according to the observation structure. In fact, these parameters can also be 
learned automatically during backpropagation. 

3. SPEAKER NORMALIZATION EXPERIMENTS 

We want to see if speaker normalization can minimize speaker variations with only a 
limited amount of training sentences. Consequently, we used 40 speaker-dependent 
sentences (about 5 minutes) to estimate the network parameters to map data of new 
speakers to the reference speaker. 

The DARF'A's resource management task [17] is used for the development of 
speaker-dependent models, which consists of 2400 training sentences from one male 
speakers (LPN) and 120 testing sentences (RMl, used in June 1990 evaluations) 

3Gl 



from 3 new speakers. The speaker-dependent training set includes 99% of the words 
in the vocabulary. The testing set includes 73% of the words in the vocabulary. 
For neural network training, 40 sentences are randomly extracted from the speaker- 
dependent training set. The word coverage is less than 19% in the normalization 
training set. Both testing and training have the same recording conditions. A number 
of experiments have been conducted on these data sets. The reader is referred to 171 
for a summary of some recognition performance benchmarks. 

Speaker 

BJW 

Through this study, the feature extraction performed in both training and testing is 
a LPC-based cepstral coefficients with a 20-ms Hamming window and a IO-ms frame 
shift. Bilinear transformation of cepstral coefficients is employed to approximate 
mel-scale representation. Multiple-string features including first-order and second- 
order time derivatives are used to construct four independent codebooks [7]. Each 
codeword is modeled by a Gaussian density function. The top4 codewords are 
used for the semi-continuous output probability density function. Only the cepstral 
vectors are considered for normalization. Once we have the normalized cepsual 
vector, the first-order and second-order time derivatives can be computed. 

2400 Training Sentences 
Word Error Rate 

1 .O% 

3.1. Benchmark experiments 

As benchmark experiments, speaker-dependent speech recognition was first eval- 
uated. The training set consists of 2400 sentences from each speaker. We used 
generalized triphone models derived from speaker-independent training set [ 111. 
Based on speaker-dependent data, the SCHMM parameters and VQ codebook were 
estimated jointly starting with sex-dependent models and codebooks. The average 
error rate for four speakers was 1.4% as shown in Table 1. Here, the error rate of the 

Average 1.4% 

Table 1: Speaker-dependent results. 

speaker-dependent system is about three times less that of the speaker-independent 
system [7]. When we used one male speaker (LPN) as the reference speaker, and 
designated the other three (one male and two female) as testing speakers, the word 
recognition error rate was 41.9% as shown in Table 2. We can see that the error rate 
of the female speakers (BJW and JRM) increased substantially. 
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1 Speaker I Cross speaker recognition I 1 iy 1 WordErrorRaie I 
55.3% 
8.5% 

JRM 62.1% 
Average 41.9% 

Table 2: Cross speaker recognition results. 

3.2. Normalization Results 

To provide learning examples for the network, a DTW algorithm [201 was used to 
warp the target data to the reference data. For the given input frames, the desired 
output frame for network leaning is the one paired by the middle input frame in 
DTW alignment. One important caution in applying the DTW alignment is that 
silence should be excluded. 

The input of the network consists of three frames from the target speaker. Here, 
12 cepstral coefficients and energy are used together. Thus, there are 93 input units in 
the network. The output of the network has 13 units corresponding the normalized 
frame, which is made to approximate the frame of the desired reference speaker. 
The energy output is discarded as it is relative unstable. The objective function 
for network learning is to minimize the distortion (mean squared error) between the 
network output and the desired reference speaker frame. The network has one hidden 
layer with 20 hidden units. Each hidden unit is associated with the S IG M 0 ID 
function, where a, P and y are predefined to be 4.0, 1.8,2.0 respectively. They are 
fixed for all the experiments conducted here. Experimental experience indicates that 
300 to 600 epochs are required to achieve acceptable distortion. We averaged results 
of three runs in following experiments. 

When a single network was used for each speaker, the average word error rate 
was reduced from 41.9% to 6.8% as shown in Table 3 (VQ size = 1). Although 
neither the codebook nor the HMM parameter was adapted in this experiment, the 
error rate was already reduced by a factor of 6. It is also interesting to note that for 
female speakers (JRM and BJW), speaker normalization dramatically reduces the 
error rate. 

To improve the generalization capability, one can increase the number of training 
data or reduce the number of free parameters. However, the complexity or dimen- 
sionality of the mapping network usually has to be increased to maintain accurate 
mapping between two speakers, which leads to the increased effective number of 
degrees of freedom in the networks. Therefore, it is important to smooth the less- 
well trained parameters. The nonlinear network output can be interpolated with the 
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original network inputs [6]. A linear input-output feedforward path can added to 
the network. All the input units can be either fully or partially connected to the 
output units without passing through any nonlinear function. The rational to add an 
interpolation path is that the nonlinear network can not be well constructed. Such 
a network architecture interpolates the nonlinear network output with the original 
network input with the interpolation weights automatically determined by the error 
back propagation algorithm [ 191. However, this topology only works well for some 
speakers. There is no significant overall difference in comparison with the basic 
topology. 

When the CDNN was used, we observed additional 25% error reduction. The 
error rate was further reduced from 6.8% to 5.0% as shown in Figure 3. This error 
rate is comparable to that of the best speaker-independent performance on the same 
test set [7]. This indicates the assembly of mapping functions indeed enhances the 
overall mapping quality. The best performance was attained when the codebook size 
was between 4 to 8. Further increase in the codebook size, as shown in the figure, 
led to degraded performance because of too many free parameters. 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6  
vo size 

Figure 3: Codeword-dependent network performance. 
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4. SUMMARY 

In this paper, the codeword-dependent neural network (CDNN) is presented for 
speaker normalization. The network is used as a nonlinear mapping function to trans- 
form speech data between speakers. Large-vocabulary continuous speech recogni- 
tion is chosen to study the effect of speaker normalization. Using speaker-dependent 
SCHMMs on the DARPA RM task, performance evaluation from three new speakers 
showed that speaker normalization reduced the error rate from 41.9% to 5.0% when 
only 40 speaker-dependent sentences are used to estimate CDNN parameters. The 
error rate is comparable to that of the best speaker-independent performance. Our 
mapping function is characterized by two important properties. First, the assembly 
of mapping functions enhances the overall mapping quality. Second, multiple input 
vectors are used simultaneously in normalization. 

Speaker-independent network can also be used as part of the front-end of the 
speaker-independent speech recognition system. The network can be built to reduce 
the difference among speakers before speaker-independent HMM training is in- 
volved such that speaker-independent models will have sharper distributions (better 
discrimination capability) in comparison with the conventional training procedure. 
Use of such normalization networks for speaker-independent speech recognition as 
wqll as unification of the SCHMM and speaker normalization could provide a new 
computational architecture for speech recognition. 
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