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ABSTRACT 
In this review, the TDNN architecture for speech recognition is de- 

scribed and its recognition performance for Japanese phonemes and 
phrases is explained. In comparative studies, it is shown that  the TDNN 
yields superior phoneme recognition performance. The TDNN optimized 
for phoneme recognition, however, does not necessarily result in op- 
timized word or phrase recognition performance, as overfitting to  the 
specific phoneme data  or recording conditions may occur. Care must 
therefore be taken to achieve robust integration, and several studies to- 
ward this goal will be reported. 

1 Introduction 
Recently Neural Network Modeling has been widely applied t o  various 
pattern recognition fields. Since one the of authors proposed a new ar- 
chitecture of the neural network model for speech recognition, TDNN 
(Time Delay Neural Network)[l], in 1987, it has been shown that  neural 
network models have high performance for speech recognition. The great 
success of the TDNN[2] encouraged many speech researchers to  concen- 
trate on this approach. In this paper, the authors review the TDNN 
architectures and the recognition performance for Japanese phonemes 
and phrases, and describe the current topics for the neural network ap- 
proach to speech recognition. 

2 TDNN Architecture 
The basic TDNN for / b ,  d , g /  phoneme recognition shown in Fig.1 is the 
four-layer feed-forward neural network model with the property: Shift 
invariant connection. In the input layer, the time series of mel-scaled 
16-channel F F T  spectrum patterns are fed into. One pattern contains 15 
vectors (frames). Thus the input layer has 15 x 16 units. Three frames 
are connected to  one frame in the first hidden layer. The first hidden 
layer has 8 x 13 units, and every 5 frames are connected t o  one frame 
in the second layer. The second hidden layer contains 3 x 9 units with 
the 9 frames connected to the output layer. The number of connection 
parameters in the input layer is 16 x 3 x 1 x 8 ,  because of the shift 
invariant connection, that  is, the shifted connection parameters in 
the following frames have the same values. The number of connection 
parameters between the first and second hidden layers, and between 
the second hidden layer and the output  layer are 5 x 8 x 1 and 3 x 9,  
respectively. The total number of connection parameters is 6233. It is 
called tied connection and shift invariant. This structure has two 
advantages: reduction of the total number of independent connection 
parameters and invariance under shifts in time. Generally speaking, the 
increase in independent connection parameters requires the the amount 
of the training data .  The first advantage helps to solve this problem. 

When the input pattern is well located for the recognizer, the recognition 
performance seems adequate. When the input pattern is not well located, 
i t  is not easy to  recognize. Shift invariance helps to  ensure successful 
recognition despite possible misalignments of the pattern in time. This 
TDNN is trained using Back Propagation algorithm with word uttered 
speech. The number of training samples for each phoneme category is 
about 200. 

Fig.2 shows a modular type TDNN system for recognizing 18 Japanese 
consonant, 5 vowels and silence. Each module is constructed and trained 
for the corresponding phoneme category. After separate training, the 
whole network is trained again. Recently, this large-scale network is di- 
rectly trained without modular training using efficient neural network 
training software[8]. This network has a module corresponding to  a 
consonant category identifier, and a vowel identifier and a silence/not 
silence identifier. Each module has the basic TDNN architecture shown 
in Fig.1. The total number of connection parameters is 87051. 
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Figure 1: TDNN Architecture 

This property has now also been exploited in tasks other than speech recognition, 
such as optical character recognition[3], [4] and natural language processing[5]. 
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Fig.3 shows the TDNN output firing pattern for a Japanese word, 
(/ikioi/). The speech analysis specification is shown in Table 1. Speech 
is uttered by one male speaker. 15 frames with a length of 150 ms is 
an input pattern to the TDNN. Input speech is sampled a t  12kHz and 
analyzed by 256-point FFT.  Considering human hearing characteristics, 
the FFT spectrum is divided into 16 channels (about 140 Hz - 5400Hz). 
The upper block in Fig.3 is the time series of mel-scaled 16-channel F F T  
spectrum patterns. The filled black rectangle indicates the higher inten- 
sity part and the gray rectangle indicates the lower part .  The  size of the 
rectangle corresponds to the intensity. The firing position for each input 
pattern is aligned to the center of 15 frames for the TDNN. The  lower 
block is the firing pattern for 23 Japanese phonemes / b ,  d,  g, p ,  t ,  k ,  m, n, 
N, s, sh,  h, z ,  eh,  Is, r ,  w, y, a, i, U ,  e,  o/ and silence /&/. The size of the 
rectangle indicates the strength of firing. The medium part shows the 
phoneme labels and segmentation boundaries given by expert label- 
ers. This figure shows that TDNN firing pattern corresponds to each 
phoneme. The first firing is silence and the following firing is vowel /i/. 
Next is the closure (silence part) of unvoiced stop /k/ and consonant 
/k/, and so on. It seems to be easier to read the TDNN firing pattern 
than to read the F F T  spectrogram series. I t  can be seen that most of 
the phonemes can be detected easily. 
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Considering the TDNN firing pattern,  it seems that TDNN is applica- 
ble to word and continuous speech recognition. Fig.4 is the architecture 
of the TDNN-LR continuous speech recognition system. The linguistic 
information, which is written in a context-free grammar, is converted into 
an LR parsing table, and the LR parser predicts the next phoneme can- 
didates using the previous phoneme recognition results. Accordingly by 
using the LR parser, linguistic hypotheses are generated and the output 
firing pattern produced by the TDNN is verified. Then the hypothesis 
with the highest output  score is recognized. To calculate the total score 
for input speech, the dynamic time warping technique is applied and the 
summation of the log activations along the best path is computed. 
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Figure 4: TDNN-LR Speech Recognition System 

3 Speech Recognition Performance 
Based on the previous TDNN phoneme firing performance, Japanese 
phoneme recognition and phrase recognition experiments have been car- 
ried out. Table 2 shows recognition performance of 18 Japanese con- 
sonant using several speech recognition algorithms[6]. HMM (Hidden 
Markov Model) is the most popular recognition technique for speech 
and most speech recognition systems have been built based on this tech- 
nique. In HMM technique, speech is modeled as probabilistic events 
trained from sufficient speech data.  This table shows that the TDNN 
provides higher recognition performance than the traditionai discrete 
HMM. 

3 15 Table 2: Japanese Phoneme Recognition Rates (18 consonants) 

Figure 2: The Modular TDNN 18 Consonant, 5 Vowel and Silence Recog- 
nition Architecture 

Table 1: Speech Analysis Specification in a TDNN Recognition System 

I windowine II 256 ooint Hammine. window I 

power 
normalization -1.0 and +1.0 with the average 

a t  0.0 
Considering this encouraging phoneme recognition performance, phrase 

recognition experiments have been performed[7]. Japanese continuous 
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Figure 3: The TDNN Output  Firing Pat tern for the Word /ikioi/ 

speech can be uttered phrase by phrase, and this utterance style is the 
most promising for current speech recognition technology. Table 3 shows 
the recognition performance for 279 Japanese phrases. This is the Con- 
ference Registration Task whose phoneme perplexity is 5.9. After 
training was performed on phonemes from isolated word da ta ,  testing 
on continuous speech da ta  resulted in lower performance, than for an 
HMM. This is presumably due to the tighter fit of the TDNN to the 
specific acoustic phonetic features found in the training data.  While this 
results in better classification performance within speaking modality, it 
leads t o  suboptimal results across speaking rates/modalities. Several 
techniques aimed a t  improving generalization across modalities, were 
explored and will be described below. Comparing this result with the 
HMM-based approach, TDNN does not provide adequate performance. 
In particular, the performance within the top five candidates is consid- 
erably lower than the HMM performance. One reason is that  the TDNN 
which over-trained to word utterance speech da ta  has less robustness 
than the conventional HMM technique. In the next section, several ap- 
proaches solving this problem are described. 

Table 3: Rates for 
phrases) 

5 4  

Japanese Phrase Recognition by TDNN-LR (279 

phrase recognition rate (%) 

Single VQ Separate VQ 

85.3 93.9 
76.6 91.8 96.4 
81.3 94.3 97.5 
82.7 95.3 98.6 

Single VQ: Power + WLR 
Separate VQ: Power + WLR + DCEP 
beam width in LR search< 18(local); < 250(global) 

The TDNN-LR recognition system was applied to large-vocabulary 
recognition[g]. The performance for a 5240-word recognition task is 
92.6%, and the rates within the top two and top three are 97.6% and 
99.1%, respectively. This  performance is quite high, and shows that the 
TDNN architecture has the potential to handle difficult speech recogni- 
tion tasks 

4 O * O  

I- .. ma 
I -1.0 

4 Extended Recent Studies of the TDNN 
To increase the robustness of the TDNN for continuous speech recogni- 
tion, the following improvements are studied. The first study shows how 
t o  provide smoothing effects in the training and/or recognition stage. 
The  2nd is a study of the optimal TDNN architecture. The 3rd study 
improves the TDNN recognition performance by using phrase uttered 
speech data.  Table 4 shows the effectiveness of the incremental training. 
The 4th study provides robustness of the TDNN using multiple pair- 
wise decisions (PD-TDNN architecture), which provides pairwise dis- 
criminant ability. Table 5 shows that PD-TDNN provides more robust 
for short phrase and continuous uttered speech than the conventional 
TDNN. The next two studies (5  and 6) propose new architectures to cap- 
ture more time information. All studies are speaker-dependent speech 
recognition tasks, tha t  is, the input speaker is limited to the speaker 
who was used in training. The  last two studies evaluate and propose 
speaker independent-type speech recognition. The 7th study show that 
the TDNN based speech recognition (Modular SID) has possibility t o  
give high performance for a speaker-independent recognition task. Table 
6 shows that proposed TDNN has high performance for a / b ,  d,  g/ recog- 
nition task. The 8th study proposes segment-based (time-frecpiency) 
speaker adaptation using a NN. Input speech is filtered by a speaker- 
mapping NN and recognized using the TDNN designed for a standard 
speaker. The 9th study proposes adaptive time-delay in TDNN. The 
10th study proposes multi-state TDNN for continuous speech recogni- 
tion. The 11th studies propose the combination architecture with HMM 
and NN. 

1. Smoothing Techniques for Robustness[lO], [ l l ] ,  [12]. 

2. Optimization of Network Architecture[l3]. 

3. Incremental Training for Phrase Recognition[l4]. 

4. Pair Discriminant NN (PDTDNN)[15] .  

5. Time-State NN(TSNN)[16]. 

6. Time-Frequency Shift-Tolerant TDNN[17]. 

7. TDNN Applied t o  Speaker-Independent Recognition[l8], [19], [20]. 

8. Speaker Adaptation NN[21], [22]. 

9. Adaptive Time-Delay NN[23] 
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10. Multi-State TDNN [24] 

11. Combination with HMM and N N  [25], [26], [27] 

rank 

1 

5 Conclusions 

phrase recognition rate (%) 

training 100/category I 200/category 
before after training 

55.0 64.4 I 65.1 

In this review, the TDNN architecture for speech recognition is described 
and its performance for Japanese phonemes and  phrases is explained. It 
is shown tha t  the TDNN yields superior phoneme recognition perfor- 
mance. The  TDNN optimized for phoneme recognition, however, does 
not necessarily result in optimized word or phrase recognition perfor- 
mance, as  overfitting t o  the specific phoneme d a t a  or recording condi- 
tions may occur. Several extended studies t o  solve this problem have 
been cited. In the near future a more robust TDNN will b e  introduced. 
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Table 4: Incremental Training for Phrase Recognition 

phrase 
continuous 

86.1 97.1 75.3 
76.8 92.9 56.7 

81.3 86.0 
5 5 82.7 88.8 88.8 

Table 5: 18 Phoneme Recognition Rates Using PD-TDNN 

I 1 1 5 3 1 1  1 
word I 93.9 I 99.8 11 96.5 

Table 6: Speaker Independent / b ,  d,  g/ Recognition Using Several TDNN 
Architectures, (tested by  4 speakers) 

I I recoenition rate (%I I 
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