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ABSTRACT 

Hybrid methods which combine hidden Markov models (HMMs) 
and connectionist techniques take advantage of what are believed to 
be the strong points of each of the two approaches: the powerful 
discrimination-based learning of connectionist networks and the time­
alignment capability of HM Ms. Connectionist Viterbi Training (CVT) 
is a simple variation of Viterbi training which uses a back-propagation 
network to represent the output distributions associated with the tran­
sitions in the HMM. The work reported here represents the culmination 
of three years of investigation of various means by which HMMs and 
neural networks (NNs) can be combined for continuous speech recog­
nition. This paper describes the CVT procedure, discusses the factors 
most important to its design and reports its recognition performance. 
Several changes made to the system over the past year are reported 
here, including: (I) the change from recurrent to non-recurrent NNs, 
(2) the change from SPHINX-style phone-based HMMs to word-based 
HMMS, (3) the addition of a corrective training procedure, and (3) 
the addition of an alternate model for every word. The CVT system, 
incorporating these changes, achieves 99.1 % word accuracy and 98.0% 
string accuracy on the TI/NBS Connected Digits task ( "Tl Digits"). 

Keywords: hybrid systems, neural networks, back propagation, Tl 
Digits, viterbi training, Connectwnist Viterbi Training, CVT 

1 Introduction: The Hybrid Strategy 

Recent work in continuous speech recognition has focused on augment­
ing existing hidden Markov model (HMM) based techniques with other 
methods. One direction this research has taken is towards the use of 
powerful discrimination methods instead of the Maximum Likelihood 
Estimation (MLE) procedures typically used for training HMMs. Since 
speech recognition entails discriminating among speech units, learning 
procedures which are defined explicitly in terms of performing a dis­
crimination task may be better suited to the task than MLE. 

Another focus of recent work with HMM-based speech recognizers 
has been on modelling speech parameters directly, rather than using 
the drastically reduced representations of the speech signal produced 
by vector quantization (VQ). Systems which vector quantize have a 
distinct disadvantage, being deprived of information which may be of 
use in the recognition process. One approach to this problem has been 
to use continuous density HMMs. However, these systems incorporate 
assumptions about the distributions of speech parameters which may 
be inaccurate. (See (!).) 

Connectionist learning procedures are designed to perform accurate 
discrimination, and they operate directly on real-valued parameters, 
without making any strong assumptions about the distributions of these 
parameters. Since the energy functions typically used in connectionist 
learning maximize the system's ability to discriminate among classes of 
input patterns, these procedures are well suited to speech recognition 
applications, in which the usual goal is to discriminate among words or 
phones. Most. connectionist. models include inputs defined over a con­
tinuous range of real numbers and exhibit no advantage with discrete 
inputs. Integrating these models into HMMs can relieve the need for 

VQ, while adding discrimination-based learning. Hence, such hybrid 
methods have been the subject of a great deal of recent investigation 
(e.g., (2, 3, 41). 

In building hybrid connectionist/HMM systems, speech recognition 
is viewed as a static pattern classification problem combined with a 
time alignment problem. These systems take advantage of the ability 
of connectionist networks to discriminate accurately among classes in 
static pattern classification problems. They use HMM technology to 
find the optimal time alignment based upon the output of the connec­
tionist component of the system. 

In this paper, we describe the Connectionist Viterbi Training (CVT) 
procedure, which is one such hybrid system. We present a general 
overview of the system, describe its components, and report a series 
of recent experiments in which we improved the performance of the 
system by more than 50% on the TI Digits task. 

2 System Overview 

The CVT system consists of a neural network (NN) and a hidden 
Markov model (HMM). These two components are not independent; 
the training of each depends on the other. 

A fundamental idea underlying the architecture of t,he CVT sys­
tem is that the connectionist section of the system performs a speech 
classification task and the HMM part of the system performs a time 
alignment task. 

In the earliest version of this system, the NN looked at a wide 
window of speech and produced as its output a hypothesis about the 
identity of the word in its input window. These hypotheses were gen­
erated for input windows in every position on the input data. Then, 
a viterbi search was used to find the optimal path through these hy­
potheses. In this version of the system, the NN and HMM components 
were entirely independent; the outputs of the NN were simply passed 
for processing to the HMM. 

In the most recent version of the CVT system, the two components 
of training are integrated. The outputs of the neural network no longer 
correspond to linguistic entities ( as they did in a previous version of the 
system, which had output units corresponding to words and phones); 
they now are defined in terms of the HMM architecture. Each NN 
output unit maps to one transition in the HMM. 

Figures la and I b illustrate the the primary components of the 
system. In the first phase of processing, the system passes one frame of 
speech (along with several frames of context) to the NN, which outputs 
a vector of floating point numbers; this vector will serve as the output 
probabilities for the HMM. In the second phase of processing, once 
one vector of output probabilities has been generated for every frame 
of input speech, a Viterbi alignment is performed to determine the 
most likely path through the HMM. During training, this is a "forced 
alignment." (i.e. forced to pass through the correct word sequence), 
and the results of the alignment are used for re-training the NN. During 
recognition, the Viterbi alignment is free to pass through all words, and 
the sentence recognized is determined by observing the words entered. 
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Figure la: NN Generation of Output Probabilities 
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Figure lb: HMM alignment of speech 

3 The TI Digits Task 

The Texas ln&truments Connect.ed Digits Recognition Task (commonly 
known as "Tl Digits") has become one of the standard tasks on which 
recognition performance of systems is assessed. The database consists 
of studio-quality dialectically-balanced recordings of about 10,000 ut­
terances of digit strings ranging in length from one to seven. The 
vocabulary includes the words ''one" through "nine," ''oh" and ''zero.'' 

The Tl Digits task has several features which make is attractive for 
performance evaluation purposes: 

• TI Digits is a small but practical task. Few speech recognition 
tasks are both useful applications and small, fairly easily manage­
able tasks. Speaker-independently recognizing continuous strings 
of numbers spoken in a natural voice is probably one of the most 
useful tasks in speech recognition. 1 Having a voc.ahulary of 12 

words which are not highly confusable, this task is well suited to 
investigations of new algorithms which require many experimen­
tal trials. Larger, more complex tasks would not allow as many 
experimental paths to be tested, due to the greatly increased time 
per experiment. 

• TI Digits has ample training and testing data. The limited size of 
training corpi is often one of the biggest problems that investiga-

1 The task of credit card purchase approval requires mimons of person hours per 
year of spoken digit recognition - performed by human beings - which could be 
replaced by an automated system such as the one described in this report. One 
application for which speech recognition will be not just economical but essential 
is that of dialing celJular telephones in cars; many states in the US and several 
countries in Europe a.re enacting laws which prohibit manual dialing of ca.r phones 
whHe in motion. 

tions in speech recognition must tackle. The need for large train­
ing corpi is especially poignant in neural-network based systems, 
which require a great deal of training data for good generalization. 

The data, as provided by the NBS, was sampled at 20 KHZ. Before 
use for training or testing oilr system, the speech was downsampled 
to 16 KHz and pre-emphasized with a filter of I - 0.97z- 1 . Then, a 
Hamming window with a width of 20 ms was applied every 10 ms. 
Autocorrelation analysis with order 14 was followed by LPC analysis 
with order 14. Finally, 12 LPC-derived cepstral coefficients and one 
power value were computed for each frame. 

4 Connectionist Architecture 

4.1 Current CVT NN architecture 

The current version of the CVT system uses a four-layer 2 network which 
accepts as input 91 speech coefficients and produces as output 120 
floating point numbers between zero and one. The input consists of one 
20 ms. frame of speech with three frames of context on each side ( 10 ms 
overlap between adjacent frames), and the output includes one value 
for every transition in the HMM. The two hidden layers each contain 34 
units. Hence, the total number of connections in the network is 8,330. 
The network is illustrated in Figure 2. 

The considerations that were made in designing the network in­
cluded: 

I. Choosing the optimal number of layers - We found that there 
was a significant performance benefit for using four layers instead 
of three. The classification error rate was reduced by nearly an 
order of magnitude when the number of layers in the network 
was increased from three to four. 3 The addition of a fourth layer 
resulted in a significantly longer training period, due to the slower 
convergence which is typically observed is deeper networks. 4 Ad din, 
a fifth layer did not produce any performance benefit and in­
creased the training time by an order of magnitude over that of 
the four-layer network. 

2. Choosing the optimal number of units per hidden layer- We found 
that the recognition performance of the network did not depend 
on the number of units in each hidden layer. However, when 
there were very few units in each hidden layer (fewer than ten), 
the convergence of the network was so slow that we were unable 
to complete training. 5 

er 

H(t) current hidden 
V I 

ms mput 

Figure 2: 
The Network Used in the Current Version of the System 

2The convention used here is that the term "layer" refers to a layer of unit., in 
the network; hence, a /ow.r./4yer network has three layers of weigh ti. 

3This experiment was perfonued with a network trained to classify 500 ms blocks 
according to the digit to which they belonged. This network wHI not be described 
h~re. 

4 This is an empirical observation made by the authors and applies to networks 
trained for speech recogi1ition. The same observation has been made by others not 
working on speech recognition - e.g., Hinton (personal communication). 
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3. Choosing between recurrence and non-recurrence (and the struc­
ture of the recurrent mechanism when present) - We have per­
formed extensive investigations of the benefits of various types 
of recurrent networks, which we will mention only briefly here. 
We found that the best configuration for a recurrent network 
was that shown in Figure 3. This architecture is similar to that 
described by Elman [6]; however, in our network, there are ten 
groups of "history" or "representation" units, where Elman has 
only one. In our experiments, the network was unable to retain 
information across more than two time steps when only one set 
of history units was used. The system peformed 6% better with 
the recurrent version of the network than with the non-recurrent 
version, but, as discussed below, we felt that the computational 
cost was too high to justify this benefit. 

4. Determining the topology of connections between layers - Although 
we have not examined different patterns of connection in the con­
text of the complete CVT system, we did investigate the impact 
of using sparse connections between layers on training data clas­
sification performance. We found that accuracy was degraded by 
10 - 50%, as the density of connections between layers varied be­
tween the maximum ( "fully connected") and a pattern of local 
connections in which each unit had a fan-in of ten. 6 

H(t-10) ~9 current 70 ms input 
~ u:ndow 

Figure 3: 
The Recurrent Network Used in a Previous Version of the System 

5 HMM Architecture 

5.1 Current CVT HMM architecture 

In the current version of the system, the HMM architecture is similar 
to that described by Bakis [7). The system uses word models in which 
each transition corresponds on average to two frames of speech in a 
word. This is close to the optimal HMM topology reported by Picone 
[8) for this task; he found that the best configuration uses word models 
with one transition for every frame of speech in a prototypical utterance 
of the word modelled. We used half this number of transitions in order 
to reduce the computational cost of training and recognition. 

Figure 4a illustrates the word models used in the current version of 
the CVT system, and Figure 4b shows the simpler Bakis-style models 
upon which our models are based. In our version of the word models, 
the duration controls are significantly tighter, since self-loops are not 
permitted. 

5.2 Phone models vs word models 

In a previous version of the system, we used phone-based HMMs with 
exactly the same topology as those used in the SPHINX system [9]. (See 
Figure 5.) When we switched from these to the word-based HMMs 
described above. the system performance improved by 40% . 

.s A past experiment [5] showed that NN performance on a speech classificatio~ 
task degraded slightly when the number of hidden wtlts was reduced drastically 
(to about 2 or 3) and reached a plateau quickly (when the number of hlddeu wiits 
reached about 8). 

6 The term 11fan-in" refers to the number of incoming connections to a unjt. 

The disadvantage of the phone models is that each transition in the 
HMM has to model a variety of speech frames, which are not highly 
localized within words. Specifically, we believe that the disadvantages 
of the phone models are owed to (1) parallel transitions, (2) self-loops, 
and (3) too few transitions per word; the best HMM architecture is that 
which models at the lowest level, with the most rigid correspondence 
between transitions and speech. 

6 Hybrid Training 

6.1 How the system works: a more detailed look 

The training procedure proceeded as follows: 

1. Initialization. 

• Use SPHINX to train a set of discrete HM Ms on this task. 

• Perform a forced Viterbi alignment of all utterances in the 
training set using this set of HMMs. This alignment es­
tablishes a mapping from frames of speech in the input to 
transitions in the HM Ms. 

2. First iteration. 

• '!rain a connectionist network on the pairings (from frames 
of speech to HMM transitions) produced by the initial align­
ment. 

• Use the initial HMMs, including the SPHINX-trained tran­
sition probabilities, but replace the discrete-HMM output 
distributions with the distributions encoded by the network. 
That is, discard the VQ codebooks and lookup tables, and 
use the network to generate output probabilties from this 
point on. 

3. Subsequent iterations. 

• Perform another forced Viterbi alignment of all the training 
data using the new HMMs (which now include the connec­
tionist network). 

• Re-train the network on the new pairings from this align­
ment. 

• Re-estimate the transition probabilities. The probability of 
taking a transition from state i to state j is re-estimated as 
the ratio of the number of times transition ij was taken (in 
the state sequences generated by the Viterbi alignment) to 
the total number of times that transitions were taken from 
state i to any state. 

• Check the performance of the new model on a "validation 
set" of utterances. If improvement is observed, perform an­
other iteration, beginning with a new forced Viterbi align­
ment. 

Figure 4a: Our Word Model 
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Figure 4b: 
The Bakis-style Word Model upon which our Model is Based 

Figure 5: 
The Phone Model Used in a Previous Version of the System 

6.3 Corrective training 

Using a form of corrective training, we have further reduced the error 
rate in the new non-recurrent word-based CVT system by about 6%. 
The general idea of the corrective training procedure is that emphasis 
in training should be placed on sentences in which the system is likely 
to committ recognition errors. This emphasis is achieved simply by per­
forming extra training on misrecognized sentences. However, given the 
rate of recognition errors, there is not a large corpus of misrecognized 
sentences to use in this manner. 

In order to generate more misrecognitions for the corrective train­
ing procedure, we suppress correct recognition of a random subset of 
training sentences; we prevent the Viterbi forced alignment from enter­
ing the correct word at certain randomly selected times. Not only does 
this augment the size of the corrective-training corpus, it also produces 
sentences which are likely to include realistic recognition errors - since 
the system is in effect making a "second choice" recognition, which we 
assume often corresponds to the sorts of errors made in actual recogni­
tion. 

6.4 Multjple models 

A second traiA'ling strategy which has proved beneficial - yielding a 33% 
increase in petformance - uses multiple models for each word. Once the 
single-model-per-word system was fully trained, an extra output unit 
for every transition in every word was added to the neural network. 
These weights were set equal to the corresponding previously trained 
weights, with the addition of a small (5%) random perturbation. Then, 
an additional HMM was created for every word, and these new models 
were associated with the new network output units. 

CVT training proceeded as before; however, during the forced align­
ment phase, the system was permitted to enter either of the models for 
a word, based on the network scores. Hence, the system was able to de­
velop models specialized for two primary pronunciations of each word. 
For example, we observed that the word 'eight' (phonetically repre­
sented as /ay/ /ti) has two primary pronunciations: one in which the 
final stop is strongly pronounced and another in which it is hardly de­
tectable. Using the new system configuration, the two pronunciations 
could be modelled seperately. 

6.5 Results: summary of performance on TI Digits 

Table I is a summary of the performance of the CVT system on the 
Tl Digits task, showing the changes in performace which accompanied 

7Somewhat faster learning was observed when a desfred value of 0.4 was assigned 
to output w1its which corresponded to different transitions within the correct phone. 
That is, the desired value for the unit corresponding to one transition in a phone 
model wa.s set to 1.0, the desired value for units corresponding to other transitions 
in that phone model was set to 0.4, and all other desired values were set. to 0.0. 

the _recent changes to the system. The current version of the system 
aclueves 99.1 % word accuracy and 98.0% string accuracy on the Tl 
Digits. 

7 

Word String Incremental 
Accuracy Accuracy Improvement 

Baseline 98.5 95.0 
CVT System 1990 
- recurrence 98.0 94.7 -6% 
+ word models 98.7 96.8 +40% 
+ corrective 98.8 97.0 +6% 
training 
+ multiple 99.1 98.0 +:33% 
models 

Table 1: Improvements in Results on TI Diidts 

Conclusion 

The go~! of this "."ork was to build a continuous-speech recognition sys­
tem which combmed the pattern-classification ability of connectionist 
networks with the time-alignment ability of hidden Markov models 
We began with a system built of two distinct components: a NN fram~ 
chiss1fi:r, a~d. an HMM post-processor. Then, using the Connectionist 
V1terb1 Trammg procedure, we integrated the training of the two parts 
of the system, such that the classification task being performed by the 
NN was in effect controlled by the HMM. 

In making the most recent revisions to the system, we have reached 
several conclusions, which may be extensible to other approaches and 
other tasks as well: (I) that modelling speech at the lowest level pos­
sible ~ppears to produce the best results and, when permitted by the 
task (1.e., when the vocabulary is sufficiently small and the size of the 
training corpus sufficiently large), word-based HM Ms should be used in 
place of phone-based HMMs, (2) that the performance of non-recurrent 
NNs_ is only slightly worse than recurrent. NNs, and the former allows a 
s1gmficant computational saving, (3) that a corrective training proce­
dure can reduce the error rate by providing additional training on error­
prone data, and ( 4) that using multiple models per word can result in 
a higher overall recognition rate, by allowing distinct representations 
of different pronunciations or different speaker characteristics. 

The most general conclusion to be drawn from this work is that NN­
HMM hybrid systems show great. promise in the domain of continuous 
speech recognition. These systems, which have been under investigation 
for only about three years, have already achieved error rates within 
one order of magnitude of the best results on a task for which HMM­
based recognizers have been under development for nearly a decade. 
Tins early success suggests that these hybrid systems may be one of 
the m~s~ viable means for performing high-accuracy continuous speech 
rP.coe::n1t1on. 
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