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ABSTRACT 
Multi-layered neural networks have been recently proposed for 

speech recognition systems. In many approaches a set of trainable 
connections with different time-delays enables the networks to 
discover temporal relationships between acoustic-phonetic events 
[ l ,  2,3]. In these networks, weights are automatically trained but 
the architecture of the network (time-delays, number of connec- 
tions and number of units) have to be predetermined by laborious 
experiments [3,4]. The Tempo 2 network proposed in this paper 
automatically learns the architecture as well. The application to 
phoneme classification shows that this adaptive architecture can 
approach the performance of a carefully handtuned TDNN and 
leads to more compact networks. The learning rule may also be 
useful to learn temporal and rhythmic relationships in speech. 

, 

I. INTRODUCTION 
The TDNN [2] and many other neural networks applied to 

speech recognition use spectrograms as input to the network. The 
spectrograms are computed with a certain frame-rate and fed into 
a neural network where each input unit represfnts one spectral 
frequency. The frame-rate of the spectrogram determines how 
often the activities of the input units of the TDNN are updated. 
Time-delays are used to let the units of the following layer capture 
some temporal context of the activations. These time-delays are 
implemented as hat-shaped input windows. For example, each 
connection in the TDNN transmits an input-window that covers 
exactly one time-frame. A unit j that is connected with unit i 
by a connection with the delay n is only receiving information 
about the activity of unit i n time-steps ago (see Fig 1). A set of 
connections with consecutive time-delays is used to let each unit 
gather a certain amount of temporal context (see Fig. 2). With 
this configuration it is necessary to specify: 

0 how much temporal context should each unit receive; 

how many independently trainable weights are needed to 
capture the temporal dynamics within this given temporal 
context; 

time 

delay 
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Figure 1: Different choices of input windows: Top: A single 
hat-shaped input window that covers one timeframe. Middle: 
A set of hat-shaped input windows with consecutive time-delays 
cover more temporal context. Bottom: A single hat-shaped input 
window that covers 5 time-frames. ('The boxes represent the acti- 
vations of the sending unit; a tall box represents a high activity.) 

connections with independently trainable weights and the time- 
delays 0, 1 and 2. The units of the second hidden layer receive 
a temporal context of five time-frames via five connections with 
independently trainable weights and the time-delays 0 .. 4. 

The choice of the parameters mentioned above directly deter- 
mines the number of free parameters in the network and therefore 
affects the amount of data that is needed for training. A network 
with a larger number of independent parameters needs more train- 
ing data. It would also be possible to let one connection transmit 
more than one time-frame (see Fig. 1). This would lead to a 
smaller number of free parameters in the network but could limit 
the ability to capture the temporal dynamics of the input token. 

what temporal context should a uni t  receive (how far should Various experiments have been run to determine the optimal ar- 
chitecture for phoneme classification networks [3,4]. The Tempo 
2 network proposed in this work optimizes the architecture by it- 
self during learning. It is a feedforward, multilayer neural network 
with adaptive weights, adaptive time-delays, adaptive widths of 

each unit look back into the past). 

In the standard TDNN, the units of the first hidden layer receive 
a temporal context of three consecutive time-frames via three 
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Figure 2: Top: A single gaussian-shaped input window covers 
a certain amount of temporal context. Bottom: Two gaussian 
shaped input windows with different weights, delays and widths 
are able to capture more complex temporal dynamics of the input 
signal. 

gaussian shaped input-windows (see Fig. 2) and a variable num- 
ber of connections. A unit j in the network is activated by input 
from a gaussian input-window over time centered around (t - d) 
and standard deviation (T, where d (the time-delay) and n (the 
width of the window) are to be leamed. This means that the cen- 
ter and widths of each input-window can be adjusted by learning 
rules. The gaussian input-window allows the derivation of leam- 
ing rules for delays and widths in the same way that is used for 
the weights in a standard Back-Propagation network[5]. The ar- 
chitecture is able to adapt to the time-scale of the input tokens and 
there is no need to specify the architectural constraints mentioned 
above: 

e The width (T of the gaussian shaped input window determines 
how much temporal context each connection transmits. 

0 The number of connections is allowed to increase during 
learning. Thus, the training algorithm determines how many 
independently trainable weights are needed to capture the 
temporal dynamics within the required temporal context . 

The adaptive time-delays determine what temporal context 
each unit receives (that means how far each unit looks back 
into the past). 

Adaptive time-delays were already realized in the previously 
proposedTempo 1 network [6,7] which was tested with sequences 
of pictures and rhythms. 

II. THE TEMPO 2 ALGORITHM 
In the Tempo 2 network a unit j at time t is activated by input 

from a gaussian shaped input-window centered around (t-d) and 
standard deviation 'T, where d (the time-delays) and (T (the width 
of the input-window) are to be learned. (Other windows are 
possible. The function describing the shape of the window has to 
be smooth.) The input of unit j at time t, x ( g ,  is 
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Figure 3: The input to one unit in the Tempo 2 network. 

with $( r. t. d,k.  IT,^) representing the gaussian input window given 
by 

where Y k  is the output of the previous sending unit and Wjk, dJk 
and m,k are the weights, delays and widths on its connections, 
respectively. 

This approach is partly motivated by neurophysiology and 
mathematics. In the brain, a spike that is sent by a neuron via 
an axon is not received as a spike by the receiving cell. Rather, 
the postsynaptic potential has a short rise and a long tail. Let 
us assume a situation with two neurons. Neuron A fires at time 
t-d, where d is the time that the signal needs to travel along the 
connection and to activate neuron B. Neuron B is activated mostly 
at time t, but the postsynaptic potential will decrease slowly and 
neuron B will get some input at time t+l, some smaller input at 
time t+2 and so on. Functionally, a spike is smeared over time 
and this provides some "local memory". 

For our simulations we simulate this behavior by allowing the 
receiving unit to be activated by the weighted sum of activations 
around an input centered at time t-d. If the sending unit ("neuron 
A") was activated at time t-d, then the receiving unit ("neuron B") 
will be activated mostly at time t, will be less activated at time 
t+l ,  and so on. In our case, the input-window function also allows 
the receiving unit to be (less) activated at times t-1, t-2 etc.. This 
symmetric 'behavior' enables us to formulate a learning rule that 
can increase and decrease time-delays. 

The gaussian input-window has the advantage that it provides 
some robustness against temporally misaligned input tokens. By 
looking at Fig. 2 or Fig. 3 it is obvious that small misalignments 
of the input signal do not change the input of the receiving unit 
significantly. The robustness is dependent on the width of the 
window. Therefore a wide window would make the input of the 
receiving unit more robust against signals shifted in time, but 
would also reduce the time-resolution of the unit. This is another 
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Adjusting the delays: 
derivative positive 
-> increase delay 

Adjusting the width of the windows . 

derivative with 

Figure 4: A graphical explanation of the learning rules for delays 
and widths: The derivative of the gaussian input-window with 
respect to time is used for adjusting the time-delays. The deriva- 
tive with respect to 0 (dotted line) is used for adjusting the width 
of the window. A majority of activation in area A will cause the 
window to grow. A majority of activity in area B will cause the 
window to shrink. 

reason for the implementation of a learning rule that adjusts the 
width of the input-windows of each connection. 

With this gaussian input-window over time, it is possible to 
compute how the input of unit j would change if the delay of a 
connection or the width of the input-window were changed. The 
formalism is the same as for the derivation of the learning rules for 
the weights in a standard Back-Propagation network. The change 
of a delay is proportional to the derivative of the output error 
with respect to the delay. The change of the width is proportional 
to the derivative of the error with respect to the width of the 
input-window. As in all Back-Propagation networks, the error 
is propagated back to the hidden layer. The learning rules for 
weights w,,, delays dl, and widths 'J], were derived from 

8E 
J W j j  = -61- 

h j i  

aE 
JO,, = -c3- 

ou,, 

where f I ,  62 and c3 are the leaming rates and E is the error. As 
in the derivation of the standard Back-Propagation learning rules, 
the chain rule is applied (z = w, d, 0): 

BE BE axx(t,, 
BZji a$), az,, 
-=-- 

where -& is the same in the learning rules for weights, delays 
and widths. The partial derivatives of the input with respect to 
the parameters of the connections are computed as follows: 

IIa. Adding New Connections 
Learning algorithms for neural networks that add or delete hidden 
units have recently been proposed [8 ,9 ] .  In our Tempo 2 network 
we currently add connections to the already existing ones. 

During learning, the Tempo 2 network starts with one con- 
nection between two units. Depending on the task this may be 
insufficient and it would be desirable to add new connections 
where more connections are needed. As we pointed out before, 
the number of connections determines the amount of training data 
which is needed for good generalization. This means that new 
connections should be only added if the progress of learning is 
slowed down. On the other hand, connections should be added 
before many epochs are used to fine-tune the parameters. If new 
resources are allocated in an already fine-tuned network this may 
ruin the fine-tuning that is already made. 

New connections are added by splitting already existing con- 
nections and afterwards training them independently. The rule for 
splitting a connection is motivated by observations during training 
runs. It was observed that inpu ndows started moving back- 
wards and forwards (that means time-delays changed) after a 
certain level of performance was reached. This can be interpreted 
as inconsistent time-delays which might be caused by temporal 
variability of certain features in the speech tokens. During train- 
ing we compute the standard deviations of 
compare them with a threshold: 

then split connection ji. 

constant widths U of the input-windows. 
The network is initialized with random weights and delays and 

III. APPLICAT 
We applied the Tempo 2 network t 

(/b/, /d/ and /g/ classification). 783 phonemes were used for 
training and 759 tokens were user for testing. In the database, no 
preselection of tokens was performed. The tokens are extracted 
from entire word utterances by a single speaker. 

The network is initialized with random weights, random delays, 
constant widths of the input windows and one connection between 
two units. During training, weights, delays, widths and the num- 
ber of connections are changed. We found that the learning rates 
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Splitting the Connections: 
A delay - 

Figure 5: Splitting of a connection. The dotted line represents the 
’old’ window and the solid lines represent the two windows after 
splitting, respectively. A connection is split if its input-window 
starts moving backwards and forwards during training. 

n adaptive 
parameters I 

( f I ,  €2 and ~3 ) for the parameters weights, delays and widths can 
not be chosen independently of each other [6,7]. If the weights 
are updated with a large step size then delays and widths have to 
be updated with a large step size, too. Otherwise the parameter 
set with the large step size is learned “egoistically”. 

In order to evaluate the usefulness of each adaptive parameter, 
the network was trained and tested with a variety of combinations 
of constant and adaptive parameters (see Table 1). The prelim- 
inary results on ’bdg’ classification reported in Table 1 already 
approach the results obtained with a carefully handtuned TDNN 
on the same task. However, no handtuning of time-delays and 
window-sizes is needed. Additionally, the evolving network per- 
forms the task with approximately a fourth of the connections 
needed in a TDNN. 

constant Training Testing 
parameters Set Set 

IV. CONCLUSION 

1 I .  

widths weights, delays 63.5% 61.8% 
delays, widths weights 70.0% 68.6% 
weights, delays widths 98.3% 91.8% 

Our results suggest that it is possible to leam the architecture of 
neural networks for speech recognition systems. Although hand- 
tuned networks perform very well it is desirable to have an auto- 
matic optimization process because different speakers, databases 
or languages might require different network architectures. 

The evolving networks are more compact than the handtuned 
counterparts. Currently the number of hidden units in our network 
is constant. We intend to incorporate an algorithm that also adds 
hidden units during training (like [8, 91). 

With the Tempo 2 algorithm we proposed a training algorithm 
for neural networks that trains the temporal parameters of the 
network (delays and widths of the input windows) as well as the 
weights. A comparison of the performances with one adaptive 
parameter set (either weights, delays or widths) shows that the 
main parameters are the weights. Delays and widths seem to 
be of lesser importance, but in combination with the weights the 
temporal parameters can improve performance, especially gener- 
alization. A Tempo 2 network with trained delays and widths and 
random weights can classify 70% of the phonemes correctly. This 
suggests that leaming temporal parameters is effective. At higher 
levels of processing temporal parameters may be significant to 
leam temporal and rhythmic relationships as they occur in speech 
and other tasks. 

I weights I delavs.widths 1 93.2% 1 89.3% / /  
II delays I weights.widths 1 64.0% I 63.0% 1 1  

- .  I 

weights, delays, widths I I 98.8% I 98.0% 

Table 1: /b/, /d/  and /gJ classification performance with 8 hidden 
units in one hidden layer. 
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