
s2.20
LEARNING THE ARCHITECTURE OF NEURAL NETWORKS

FOR SPEECH RECOGNITION

Ulrich Bodenhausen Alex Waibel

School of Computer Science, Camegie Mellon University
Pittsburgh, Pennsylvania 15213-3890, USA

ABSTRACT
Multi-layered neural networks have been recently proposed for

speech recognition systems. In many approaches a set of trainable
connections with different time-delays enables the networks to
discover temporal relationships between acoustic-phonetic events
[l , 2,3]. In these networks, weights are automatically trained but
the architecture of the network (time-delays, number of connec-
tions and number of units) have to be predetermined by laborious
experiments [3,4]. The Tempo 2 network proposed in this paper
automatically learns the architecture as well. The application to
phoneme classification shows that this adaptive architecture can
approach the performance of a carefully handtuned TDNN and
leads to more compact networks. The learning rule may also be
useful to learn temporal and rhythmic relationships in speech.

,

I. INTRODUCTION
The TDNN [2] and many other neural networks applied to

speech recognition use spectrograms as input to the network. The
spectrograms are computed with a certain frame-rate and fed into
a neural network where each input unit represfnts one spectral
frequency. The frame-rate of the spectrogram determines how
often the activities of the input units of the TDNN are updated.
Time-delays are used to let the units of the following layer capture
some temporal context of the activations. These time-delays are
implemented as hat-shaped input windows. For example, each
connection in the TDNN transmits an input-window that covers
exactly one time-frame. A unit j that is connected with unit i
by a connection with the delay n is only receiving information
about the activity of unit i n time-steps ago (see Fig 1). A set of
connections with consecutive time-delays is used to let each unit
gather a certain amount of temporal context (see Fig. 2). With
this configuration it is necessary to specify:

0 how much temporal context should each unit receive;

how many independently trainable weights are needed to
capture the temporal dynamics within this given temporal
context;

time

delay

tlmc

Figure 1: Different choices of input windows: Top: A single
hat-shaped input window that covers one timeframe. Middle:
A set of hat-shaped input windows with consecutive time-delays
cover more temporal context. Bottom: A single hat-shaped input
window that covers 5 time-frames. ('The boxes represent the acti-
vations of the sending unit; a tall box represents a high activity.)

connections with independently trainable weights and the time-
delays 0, 1 and 2. The units of the second hidden layer receive
a temporal context of five time-frames via five connections with
independently trainable weights and the time-delays 0 .. 4.

The choice of the parameters mentioned above directly deter-
mines the number of free parameters in the network and therefore
affects the amount of data that is needed for training. A network
with a larger number of independent parameters needs more train-
ing data. It would also be possible to let one connection transmit
more than one time-frame (see Fig. 1). This would lead to a
smaller number of free parameters in the network but could limit
the ability to capture the temporal dynamics of the input token.

what temporal context should a uni t receive (how far should Various experiments have been run to determine the optimal ar-
chitecture for phoneme classification networks [3,4]. The Tempo
2 network proposed in this work optimizes the architecture by it-
self during learning. It is a feedforward, multilayer neural network
with adaptive weights, adaptive time-delays, adaptive widths of

each unit look back into the past).

In the standard TDNN, the units of the first hidden layer receive
a temporal context of three consecutive time-frames via three

- 117-
CH2977-7/91/0000-0117 $1.00 0 1991 IEEE

t i m

1llX

Figure 2: Top: A single gaussian-shaped input window covers
a certain amount of temporal context. Bottom: Two gaussian
shaped input windows with different weights, delays and widths
are able to capture more complex temporal dynamics of the input
signal.

gaussian shaped input-windows (see Fig. 2) and a variable num-
ber of connections. A unit j in the network is activated by input
from a gaussian input-window over time centered around (t - d)
and standard deviation (T, where d (the time-delay) and n (the
width of the window) are to be leamed. This means that the cen-
ter and widths of each input-window can be adjusted by learning
rules. The gaussian input-window allows the derivation of leam-
ing rules for delays and widths in the same way that is used for
the weights in a standard Back-Propagation network[5]. The ar-
chitecture is able to adapt to the time-scale of the input tokens and
there is no need to specify the architectural constraints mentioned
above:

e The width (T of the gaussian shaped input window determines
how much temporal context each connection transmits.

0 The number of connections is allowed to increase during
learning. Thus, the training algorithm determines how many
independently trainable weights are needed to capture the
temporal dynamics within the required temporal context .

The adaptive time-delays determine what temporal context
each unit receives (that means how far each unit looks back
into the past).

Adaptive time-delays were already realized in the previously
proposedTempo 1 network [6,7] which was tested with sequences
of pictures and rhythms.

II. THE TEMPO 2 ALGORITHM
In the Tempo 2 network a unit j at time t is activated by input

from a gaussian shaped input-window centered around (t-d) and
standard deviation 'T, where d (the time-delays) and (T (the width
of the input-window) are to be learned. (Other windows are
possible. The function describing the shape of the window has to
be smooth.) The input of unit j at time t, x (g , is

ra) k

m o m " - input n

time

Figure 3: The input to one unit in the Tempo 2 network.

with $(r. t. d,k. IT,^) representing the gaussian input window given
by

where Y k is the output of the previous sending unit and Wjk, dJk
and m,k are the weights, delays and widths on its connections,
respectively.

This approach is partly motivated by neurophysiology and
mathematics. In the brain, a spike that is sent by a neuron via
an axon is not received as a spike by the receiving cell. Rather,
the postsynaptic potential has a short rise and a long tail. Let
us assume a situation with two neurons. Neuron A fires at time
t-d, where d is the time that the signal needs to travel along the
connection and to activate neuron B. Neuron B is activated mostly
at time t, but the postsynaptic potential will decrease slowly and
neuron B will get some input at time t+l, some smaller input at
time t+2 and so on. Functionally, a spike is smeared over time
and this provides some "local memory".

For our simulations we simulate this behavior by allowing the
receiving unit to be activated by the weighted sum of activations
around an input centered at time t-d. If the sending unit ("neuron
A") was activated at time t-d, then the receiving unit ("neuron B")
will be activated mostly at time t, will be less activated at time
t+l , and so on. In our case, the input-window function also allows
the receiving unit to be (less) activated at times t-1, t-2 etc.. This
symmetric 'behavior' enables us to formulate a learning rule that
can increase and decrease time-delays.

The gaussian input-window has the advantage that it provides
some robustness against temporally misaligned input tokens. By
looking at Fig. 2 or Fig. 3 it is obvious that small misalignments
of the input signal do not change the input of the receiving unit
significantly. The robustness is dependent on the width of the
window. Therefore a wide window would make the input of the
receiving unit more robust against signals shifted in time, but
would also reduce the time-resolution of the unit. This is another

- 118 -

Adjusting the delays:
derivative positive
-> increase delay

Adjusting the width of the windows .

derivative with

Figure 4: A graphical explanation of the learning rules for delays
and widths: The derivative of the gaussian input-window with
respect to time is used for adjusting the time-delays. The deriva-
tive with respect to 0 (dotted line) is used for adjusting the width
of the window. A majority of activation in area A will cause the
window to grow. A majority of activity in area B will cause the
window to shrink.

reason for the implementation of a learning rule that adjusts the
width of the input-windows of each connection.

With this gaussian input-window over time, it is possible to
compute how the input of unit j would change if the delay of a
connection or the width of the input-window were changed. The
formalism is the same as for the derivation of the learning rules for
the weights in a standard Back-Propagation network. The change
of a delay is proportional to the derivative of the output error
with respect to the delay. The change of the width is proportional
to the derivative of the error with respect to the width of the
input-window. As in all Back-Propagation networks, the error
is propagated back to the hidden layer. The learning rules for
weights w,,, delays dl, and widths 'J], were derived from

8E
J W j j = -61-

h j i

aE
JO,, = -c3-

ou,,

where f I , 62 and c3 are the leaming rates and E is the error. As
in the derivation of the standard Back-Propagation learning rules,
the chain rule is applied (z = w, d, 0):

BE BE axx(t,,
BZji a$), az,,
-=--

where -& is the same in the learning rules for weights, delays
and widths. The partial derivatives of the input with respect to
the parameters of the connections are computed as follows:

IIa. Adding New Connections
Learning algorithms for neural networks that add or delete hidden
units have recently been proposed [8 ,9] . In our Tempo 2 network
we currently add connections to the already existing ones.

During learning, the Tempo 2 network starts with one con-
nection between two units. Depending on the task this may be
insufficient and it would be desirable to add new connections
where more connections are needed. As we pointed out before,
the number of connections determines the amount of training data
which is needed for good generalization. This means that new
connections should be only added if the progress of learning is
slowed down. On the other hand, connections should be added
before many epochs are used to fine-tune the parameters. If new
resources are allocated in an already fine-tuned network this may
ruin the fine-tuning that is already made.

New connections are added by splitting already existing con-
nections and afterwards training them independently. The rule for
splitting a connection is motivated by observations during training
runs. It was observed that inpu ndows started moving back-
wards and forwards (that means time-delays changed) after a
certain level of performance was reached. This can be interpreted
as inconsistent time-delays which might be caused by temporal
variability of certain features in the speech tokens. During train-
ing we compute the standard deviations of
compare them with a threshold:

then split connection ji.

constant widths U of the input-windows.
The network is initialized with random weights and delays and

III. APPLICAT
We applied the Tempo 2 network t

(/b/, /d/ and /g/ classification). 783 phonemes were used for
training and 759 tokens were user for testing. In the database, no
preselection of tokens was performed. The tokens are extracted
from entire word utterances by a single speaker.

The network is initialized with random weights, random delays,
constant widths of the input windows and one connection between
two units. During training, weights, delays, widths and the num-
ber of connections are changed. We found that the learning rates

- 119 -

Splitting the Connections:
A delay -

Figure 5: Splitting of a connection. The dotted line represents the
’old’ window and the solid lines represent the two windows after
splitting, respectively. A connection is split if its input-window
starts moving backwards and forwards during training.

n adaptive
parameters I

(f I , €2 and ~3) for the parameters weights, delays and widths can
not be chosen independently of each other [6,7]. If the weights
are updated with a large step size then delays and widths have to
be updated with a large step size, too. Otherwise the parameter
set with the large step size is learned “egoistically”.

In order to evaluate the usefulness of each adaptive parameter,
the network was trained and tested with a variety of combinations
of constant and adaptive parameters (see Table 1). The prelim-
inary results on ’bdg’ classification reported in Table 1 already
approach the results obtained with a carefully handtuned TDNN
on the same task. However, no handtuning of time-delays and
window-sizes is needed. Additionally, the evolving network per-
forms the task with approximately a fourth of the connections
needed in a TDNN.

constant Training Testing
parameters Set Set

IV. CONCLUSION

1 I .

widths weights, delays 63.5% 61.8%
delays, widths weights 70.0% 68.6%
weights, delays widths 98.3% 91.8%

Our results suggest that it is possible to leam the architecture of
neural networks for speech recognition systems. Although hand-
tuned networks perform very well it is desirable to have an auto-
matic optimization process because different speakers, databases
or languages might require different network architectures.

The evolving networks are more compact than the handtuned
counterparts. Currently the number of hidden units in our network
is constant. We intend to incorporate an algorithm that also adds
hidden units during training (like [8, 91).

With the Tempo 2 algorithm we proposed a training algorithm
for neural networks that trains the temporal parameters of the
network (delays and widths of the input windows) as well as the
weights. A comparison of the performances with one adaptive
parameter set (either weights, delays or widths) shows that the
main parameters are the weights. Delays and widths seem to
be of lesser importance, but in combination with the weights the
temporal parameters can improve performance, especially gener-
alization. A Tempo 2 network with trained delays and widths and
random weights can classify 70% of the phonemes correctly. This
suggests that leaming temporal parameters is effective. At higher
levels of processing temporal parameters may be significant to
leam temporal and rhythmic relationships as they occur in speech
and other tasks.

I weights I delavs.widths 1 93.2% 1 89.3% / /
II delays I weights.widths 1 64.0% I 63.0% 1 1

- . I

weights, delays, widths I I 98.8% I 98.0%

Table 1: /b/, /d/ and /gJ classification performance with 8 hidden
units in one hidden layer.

V. ACKNOWLEDGEMENT
The authors gratefully acknowledge the support of the

McDonnel-Pew Foundation (Cognitive Neuroscience Program)
and ATR Interpreting Telephony Research Laboratories.

REFERENCES
[I] Tank, D. W. and Hopfield, J. J.. Neural Computation By

Concentrating Information In Time. In Proceedings National
Academy of Sciences, pages 1896-1900, April 1987.

[2] Waibel, A., Hanazawa, T., Hinton, G., Shikano, K. and Lang,
K. Phoneme Recognition Using Time-Delay Neural Net-
works. IEEE, Transactions on Acoustics, Speech and Signal
Processing, March 1989.

[3] Lang, K. J., Hinton, G. E. and Waibel, A. H.. A Time-
Delay Neural Network Architecture For Speech Recognition.
Neural Networks Journal, 1990.

[4] Kamm, C. E.. Effects Of Neural Network Input Span On
Phoneme Classification. In Proceedings of the International
Joint Conference on Neural Networks, June 1990,

[5] Rumelhart, D. E., Hinton, G. E. and Williams, R. J.. Learning
Intemal Representations By Error Propagation. In J.L. Mc-
Clelland and D.E. Rumelhart, editors, Parallel Distributed
Processing; Explorations in the Microstructure of Cognition,
chapter 8, pages 3 18-362. MIT Press, Cambridge, MA, 1986.
Bodenhausen, U.. The Tempo Algorithm: Learning In A
Neural Network With Adaptive lime-Delays. Proceedings
of the International Conference on Neural Networks, January
1990.
Bodenhausen, U.. Learning Intemal Representations Of Pat-
tem Sequences In A Neural Network With Adaptive Time-
Delays. Proceedings of the International Conference on Neu-
ral Networks, June 1990.
Fahlman, S. and Lebiere, C.. The Cascade-Correlation Learn-
ing Architecture. In Advances in Neural Information Process-
ing Systems. Morgan Kaufmann, 1990.
Hanson, S. J.. Meiosis Networks. In Advances in Neural
Information Processing System. Morgan Kaufmann, 1990.

- 120 -

