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ABSTRACT 

Successful application of existing connectionist methods to contin- 
uous speech recognition requires the use or  time-alignment proce- 
dures. These procedures. usually based on dynamic programming, 
provide means for supervising the training of neural networks. This 
paper describes two systems in which neural network classifiers are 
merged with dynamic programming (DP) time alignment methods 
to produce high performance continuous speech recognizers. One 
system uses the Connectionist Viterbi Training (CVT) procedure, 
in which a neural network with frame-level outputs is trained using 
guidance from a time alignment procedure. The other system uses 
Multi-State Time Delay Neural Networks (MS-TDNNs). in which 
embedded DP time alignment allows network training with only 
word-level external supervision. CVT has been described previ- 
ously [l] ;  only changes lo the system and new results on the TI 
Digits task are reported here. The newest CVT results on the TI 
Digits are 99.1% word accuracy and 98.0% string accuracy. MS- 
TDNNs, introduced in this paper, are described in more detail here, 
with attcntion focused on their basic architecture, the training pro- 
cedure, and results of applying MS-TDNNs to continuous speaker- 
dependent alphabet recognition: on two speakers, word accuracy is 
respectively 97.5% and 89.7%. 

1 INTRODUCTION 

Extending the classification capabilities of connectionist networks to con- 
tinuous speech recognition is an important research direction in speech recog- 
nition. Time alignment presents the greatest problem for neural network (NN) 
based systems, since connectionist learning procedures are typically defined 
in terms of static pattern classification tasks. One effective solution to the 
problem of applying NN-based systems to continuous speech recognition is 
to combine an alignment procedure with the NN; the time alignment can be 
performed exterrrally to the network [l,  21 or internally [3]. In most of these 
"hybrid"sys1ems. the alignment procedure is based on dynamic programming 
P P ) .  

This paper describes two hybrid systems developed at Carnegie Mcllon, 
both of which demonstrate that NN-based systems are able to achieve very 
high performance on continuous speech recognition tasks. 

The Connectionist Viterbi Training (CVT) procedure uses NNs to perfom 
kame-level classification and a hidden Markov model (HMM) to perform 
time alignment. The outputs of the network are used as emission probabilities 
associated with the transitions in the HMM. The training procedure is a 
straightforward adaptation of Viterbi Training, in which re-estimation of the 
HMM emission probabilitiesentails re-training the NN. An earlicr version of 
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the CVT system was described at ICASSP'90 [ 11. This paper reports changes 
to the system and new results on the TI Digits task. 

Multi-State Time Delay Neural Networks (MS-TDNNs) perform classi- 
fication at the word level. Unlike CVT (and many other hybrid methods), 
these networks are not trained using frame-level supervision provided by the 
time-alignment section of the system MS-TDNNs incorporate the DP pro- 
cedure into their trmning, such that only extemal word-level supervision is 
required Because or the novelty of the approach, the way the DP procedure 
is implemented inside the NN is descnbed in some detal. The architecture of 
the MS-TDNN system can be characterized as purely connectionist, since the 
time alignment procedure is an integral parl o l  the neural network training 
Powerful learning techniques and the use of phonemic knowledge in the NN 
architecture enable this very large NN to learn withln reasonable time wlth 
minimal extemal supervision The system is compared to the discrete FLMM 
based SPHINX system on continuous speaker-dependent alphabet recogni- 
tion. 

2 INTEGRATING TIME ALIGNMENT AND 
CONNECTIONIST NETWORKS 

To take into account the time distortions that may appear within its bound- 
anes, a word is generally modeled by a sequence of states that can have 
variable time durations. Even though some recurient connectionist architec- 
turcs have been proposed to learn sequences of states, they have only been 
demonstrated on very simple tasks. Training proceeds too slowly in these 
systems to make them practical in large speech tasks. 

For speech tasks in which modeling sequential state information is not 
necessary, excellent recognitionperformmlce has been achieved using TDNNs 
or lrame level classification NNs. To extend this perlormance to multi-stale 
word recognition, one has to combine the NN with a procedure performing 
time alignment, usually based on Dynamic Programming. A NN produces 
the state scores, and. for each word in the vocabulary, a DP procedure finds 
the path through the set of states which provides the best cumulative score 
(generally the sum or the product of the state scores lying on this path). 
The word, or the string of words (in continuous speech) yielding the best 
cumulative score is taken to be the result of the recognition. A variety of 
training methods have been proposed for those systems. 

3 CONNECTIONIST VITERBI TRAINING 

At ICASSP '90, Franzini, Lee and Waibel [l] reported results for the 
Connectionist Viterbi Training (CVT) procedure applied to the TI Digits task. 
Although that version of the CVT system performed considerably better than 
the SPHINX system on the same task,' it significantly underperformed the best 
HMM-based continuous word recognizers [4]. Since then, we have reduced 
the string and word error rates of the system on this task by more than 
50%. 

CVT is one of several hybrid sy combining neural networks and 
Viterbi alignment which have been proposed recently. Generally, in these 
systems, the frame level output score of each stale is assumed to represent a 
likelihood associated with the input speech, and the overall emission prob- 
ability of a word is obtained by multiplying the frame level outputs, which 
approximate probabilities. 

'Very little tuning of lhe Sphinx system was perfo 
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These systems are “hybrid” not only in their architecture but also in their 
training procedures. The free parameters of the HMh4/time-alignment part 
of the system are reestimated using probabilistictechniques, whereas the NN 
weights are molfied using gradient descent. 

Uslng the CVT procedure, a network is trained to estimate output proba- 
bilities associated with transitions in an HMM. The training procedure allows 
iterative re-estimation of these output probabilities, which are encoded in the 
weights of the network. Several changes have been made to the CVT system 
over the course of the past year, as shown in Table 1. These changes are 
described in more detail elsewhere [SI. 

training 
+ multiple 
models 

I Word I String I Incremental 1 

99.1 98.0 +33% 

1 Accuracy I Accuracy I lmprovement 
Baseline 1 98.5 1 95.0 
ICASSP’90 

+word models 

Table 1: Improvements in CVT Results on TI Digits 
This table shows the incremental improvements to the CVTsystem 
sirrce ICASSP’90. The third column shows the reduction in string 
error rote after making the specfled change. The bottom row shows 
the best results that CVT has achieved on this task. 

Since ICASSP ’90, we have abandoned the recurrent portion of the neural 
network. As a result. we incurred a small decline in performance but gained 
a significant decrease in the computational complexity of the training proce- 
dure. Simplifying the network architecture in this way allowed us to devote 
computational resources to more complex training strategies. 

The new implementation of CVT for the Digits task uses Bakis style word 
models, which allow modeling of finer subword distinctions than the Sphinx- 
style models [6] used in the previous version of the system. 

(Figure la)  

(Figure Ib )  

Figure 1: The CVT Word Model 
Thisfrgure shows the architecture of the word models used in the 
current version of theCVTsystem. Figure l a  isa simplfledillusrra- 
lionofoneofthe wordmodels;eachpairofadjacentsta~esshown in 
Figure 1 a actually corresponds to the series of states shown in Fig- 
ure 1 b .  For example. states A and B in Figure 1 b could correspond 
10 states 1 and 2 in Figure l a .  

As shown in Figure 1, the word model is a series of ten sub-series of 
states. All of the transitions within each sub-series are tied to the same output 
probability; hence, there is one output unit in the network for each of the ten 
sub-series in the word model. The time spent in each sub-series is controlled 
by transition probabilities associated with the transitions in that sub-series. 

Using a form of corrective training, we have further reduced the error 
rate in the new non-recurrent word-based CVT system by about 6%. In 
our corrective training procedure, the segments of the sentences which are 
misrecognized are set aside during the forced alignment phase. Segments of 
correctly recognized sentences in which the output probabilities are low are 

also isolated. Once these segments are identified, the network is retrained to 
suppress the score of the misrecognized segments and improve the score of 
the correctly reeognizd segments. 

A second training strategy which has proved beneficial uses multiple mod- 
els for each word. Once the single-model-per-word system was fully trained, 
an extra output unit for every transition in every word was added to the neu- 
ral network. These weights were set equal to the corresponding previously 
trained weights, with the addition of a small (5%)  random perturbation. Then, 
an additional HMM was created for every word, and these new models were 
associated with the new network output units. CVT training proceeded as 
before; however, during the forced alignment phase, the system was permit- 
ted to enter either of the models for a word, based on the network scores. 
Hence, the system was able to develop models specialized for two primary 
pronunciations of each word. 

4 MULTI-STATE TIME-DELAY NEURAL NETWORKS 

4.1 Embedding Time Alignment in a Neural Network 

In order to integrate the DP procedure into a connectionist network, a 
connectionist representation of the DP accumulation of frame scores over 
time is necessary. The word score will be the output of a connectionist 
unit that is supervised using a classification based back-propagation leaming 
algorithm. 

Traditional DP-based methods attempt to minimize a sum of distances 
(Dynamic Time Warping) or maximize a product of probabilities (Viterbi 
alignment). Pre l iminq  experiments have shown that those accumulation 
procedures are very diflicult to integrate in a global connectionist architecture. 
On the other hand, the summation over time of unit activations has been a 
highlysuccessful approach with Time-Delay Neural Networks (TDNNs)[7,8]. 
However, TDNNs do not model time sequences with multiple states. 

Units accumulating activations over time will be referred to as Temporal 
Accumulator Units or TAU-units in the rest of this paper. 

With MS-TDNNs, we have extended the formalism of TDNNs to incor- 
porate multiple sequential states. Suppose there are several slates in a word 
(roughly corresponding lo several phones), represented by a series of NN 
“state units” which are subject to certain sequential constraints. The word- 
level TAU-unit accumulates the activations of the fust state unit over some 
period of time, then shifts attention to the next state unit and accumulates its 
activations. until i t  reaches the ending stale of the word. We see in Figure 2 
this word-level TAU-unit, which at each time is connected to the state unit in 
the optimal path, through a “winner take all connection.” As in the one-state 
TDNN, it is essential to add a non-linearity (sigmoid)[7] into the word-level 
TAU-units so that small deviations at the frame level do not adversely affect 
overall classification performance. 

This process may be Seen as an integration of local phonemic decisions 
over time, where these decisions are constrained to follow the sequence of 
stale (phone) units that make up the word. The MS-TDNN does not require 
precise phonemic decisions at each point in time (as many current hybrid 
approaches implicitly attempt), but only sufficient evidence for each of the 
phones that make up the word (subject to the order in which they occur) 
such that a decision of one word over another can be made. This limits the 
sensitivity of the system to frame-level classification errors. 

Dynamic Neural Networks (DNNs) 131 were the first connectionist archi- 
tecture to include dynamic programming, but they accumulate one score per 
state, whereas MS-TDNNs accumulate one score per time frame. The DP 
procedure used in MS-TDNNs is more easily extended to connected speech 
~91. 

4.2 Architecture 
In MS-TDNNs, the formalism of TDNNs has been extended to incorporate 

multiple sequential stata?. As seen in Figure 2, the network has 5 main layers 
of units. From the input layer to the second hidden layer (phone scores), the 
MS-TDNN is very similar to a phoneme-recognition TDNN [7]. Each unit of 
the first hidden layer receives input from a 3-frame window of the Nterbank 
coefficients. Similarly, each unit in the second hidden layer receives input 
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from a 5-frame window of the first hidden layer. At this levcl of the system 
(2nd hidden layer), the network produces, at each time frame, the scores of 
the phones Our phone set is an extension of the Arpabet phone set to perform 
continuous alphabet recognition Some complex phones such as aphthongs 
or affncates are split into two separate phones 

2-Class MS-TDNNCip,, erg,, 

WOIWTARGETS 

N 
P-IY 

P 

PHONE 
SCORES 

IST 
HIDDEN 
LAYER 

13 Dela s 

INPUT m r h  -.. * .  ., 

SPEECH . - . . - . - . -...--....... - 0 .  - - . . . * . - . .  a - .  .. 
Figure 2: MS-TDNN Architecture 

The units in the third hidden layer represent the scores of the word states. 
As output of the network, there is one TAU-unit per word to recognize. The 
2-class MS-TDNN described here as an example has to recognize the words 
(spoken letters) 'P' and 'B', whose phonemic representations are /P IY/ and 
/B IYI. 
4.3 Integrating Phonetic Knowledge 

A closer examination of the units (corresponding to word states) in the third 
hidden layer and the way they combine phone scores from the second hidden 
layer will reveal how the phonetic description of the words is integrated in 
the connectionist architecture. 

Stable state Units which represent thesteady-state parts of a word- the parts 
in which there are no transitions between phones - are known as stuble 
stute units. For instance. the word 'P' has two stable states. The first one 
corresponds to the phone /P/, and its score is a weighted version of the 
/PI phone score from the 2nd hidden layer. Similarly, the activation of 
the last state is a weighted version of the /IY/phone score. It is therefore 
possible to weight differently the importance of each state belonging to 
the same word. We do not have to assume that each part of a speech 
pattem contains an equal amount of information. 

There are two categories of state units: 

Transition state Units which correspond to transitions between phones are 
known as rrunsition srufe units. With each phone score unit, we associate 
a phone delta-score unit, which computes the derivative of the phone 
score. The transition state between state /PI and state /IY/ will attempt 
to model the coarticulation between E'/ and /IY/, where the /P/ score 
is falling and the /IY/ score is rising. Its score is thus a weighted 
combination of the /PI phone delta-score (negative) and the /IY/phone 
delta-score(positive). Those transition units have been found to have a 
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useful segmenting role and to improve global performance. 

4.4 Learning 

that has been optimized on Japanese phoneme 
global gradient back-propagation is applied to the whole system, from the 
output TAU-units down to the input units. For each sentence in the learning 
set, the sequence of input frames is time aligned with the desired string of 
words, using SPHINX in a forced alignment mode. Each desircd word is 
therefore associated with a segment of speech with known boundanes. and 
this association represents a learning sample. The DP alignment procedure 
is applied between the known word boundaries, except in the bootstrapping 
phase, during which phone labels are used to give the alignment of the desired 
word. 

Our optimization procedure explicitly attempts to minimize the number of 
word substitutions; this approach represents a move towards systems in which 
the training objective is maximum word accuracy. However, insertions and 
deletions are not yet takcn into account, generating some 
system is used in  recognition mode. 

The MS-TDNN traming uses a fast back-pro 

4.5 Recognition 

sentence - a series of connected words - individual speech segments 
which represent single words, as during A one-stage DP algorithm 
[9] for connected words is used in place of the isolated word DP algorithm 
used in the training phase. Our first recognition runs were plagued with 
a large number of insertions, which were mostly words corresponding to 
spelled vowels. The training procedure does not include any penalty for these 
insertions; however, several simple features of the recognition procedure 
have reduced the number of insertions to an acceptable level: (1) Bounded 
Durutions - the duration of each word is bounded between the minimum 
and maximum values observed in the training data, (2) Boundary derection - 
word transitions are allowed only when specially trained boundary detectors 
tire over a given threshold, and (3) Word entruncepenulties- a fixed penalty 
is added to the DP score every time a word is entenxi. 

However, the optimization of these "external" features is not part of the 
main learning procedure described in the previous section. We will see that 
a possible direction for future improvements will be t 
connectionist architecture. 

4.6 Experiments on Connected Alphabet 
Recognizingspoken lelters is considered one of the most challenging small- 

vocabulary tasks in speech recognition. The vocabulary, consisting of the 26 
letters of the alphabet, is highly conlusable, especially among subsets like 
the E-set ('B','C','D','E','G','P','T','V','Z') or ('M','N'), Fine acoustical 
modeling is necessary to discriminate among confusable phonemes such as 
/b/ and /d/, so that the letter 'B' can be distinguished [Tom the letter 'D'. Many 
systems have been proposed so far to perform isolated letter recognition 
DTW and HMM based systems [ I  I] solve the problem of time alignment, 
but the necessary discrimination between confusable words is difficult to 
perform Based on a classification paradigm, NNs have been shown to perform 
good discrimination on the isolaled alphabet task IS]. but those NNs do not 
implement time alignment. Some preprocessing is required to segment the 
part of the utterance on which the NN is going to focus its discnminant 
attention; therefore, this approach is difficult to extend to continuous speech. 

Our database consists of IO00 connected strings of letters, some correspond- 

During the recognition phase, time alignment is perf0 

ing to grammatical words and proper names, others simply random. There is 
an average of five letters per stnng. Two speakers have been collected so far. 
The system should be able to recognize any kind of spelled word, including 
foreign proper names and non-grammatical strings of letters; recognition does 
not make use of any grammar. The stringsare labeled with an automaticproce- 
dure using the discrete-HMM based SPHINX system [6] in a forced-alignment 
mode. The SHIM( phone models used in (he forced-alignment were trained 
on a speaker-independent vocabulary-independent task. As input parameters, 
16 fiterbank melscale spectrum coefficients are computed at a 10 msec frame 
rate. 



For comparison, we have also trained SPHINX speaker-dependently on the 
same data used in thc MS-TDNN experiments. Two versions of SPHINX 
models were trained: one with context independent phones (monophones), 
and one with context dependent phones (triphones, descibed in [6]).2 Three 
iterations of Baum-Welsh (standard MLE) training were performed. SPHINX 
used the same input rcprescntation as the MS-TDNN system. It should be 
noted that the SPHINX system was not tuned for this task. 

Training the system on 500 strings from one speaker (2500 Ictters) takes 
about 1 day on a DEC-3 IO0 workstation; training SPHINX on the same data 
takes a similar amount of time. Both systems have been tested on the other 
500 strings form the same speaker. Table 2 shows the results of training and 
testing the system on two speakers. 

Speaker MS-TDNN Sphinx 
Context Context 
Indcpendent Independent 

JMT Word Acc. 97.5 94.0 

Sphinx 
Context 
Dcpcndent 
Y6.0 

String Ace. 89.0 
L B S  WordAcc. I 89.7 

Siring Acc. 1 59.0 29.6 41.6 

4.7 Improvements 
We have presented and tested a learning procedure aimed at reducing the 

number of word substitutions. The following planned improvements are 
designed to increase the MS-TDNN system’s word accuracy, and especially 
reduce the number of insertions and deletions. 

Using strings of words as trainingtokens should more explicitly minimize 
the global string accuracy; however, pruning among the many possible 
string counter-examples is needed for this method to be computationally 
feasible. 

State durations represent information that can be used as input by small 
specialized networks whose output activations correct the MS-TDNN 
word score. 

5 CONCLUSION 

Both of the systems described in this paper demonstrate that high recogni- 
tion accuracies can be achieved by systems which integrate time alignment 
and neural networks. 

These systems represent two distinct approaches to applying classification- 
based connectionist leaming procedures to continuous speech recognition. In 
CVT, NN supervision occurs at the slate level and is guided by feedback from 
the time-alignment section of the system; what thc CVT system maximizes is 
the input speech likelihood. In MS-TDNN training, NN supervision occurs at 
the word level; what the MS-TDNN system maximizes is the word recognilion 
rate. 

’The 1988 3-codebook version of the SPIUNX systcm was used. 

The experiments reported here with CVT applied to the TI Digits task 
demonstrate that hybrid NN/HMM systems can outperlom HMM-based sys- 
tems on a difficult real-world speech task. The improvements to the CVT 
system since ICASSP’90 have reduced the error rate on TI Digits by over 
50%. to a word error rate of 0.9%. 

Multi-State Time-Delay Neural Networks integrate a DP alignement pro- 
cedure with a connectionist architecture. Their ability to recognize contin- 
uous speech, while retaining the discriminant capabilities of classification 
NNs, leads to a high word accuracy on speaker-dependent connected alphabet 
recognition: 97.5% and 89.7% for our two speakers. 
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