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ABSTRACT

Hybrid methods which combine hidden Markov imodels (HMMs) aud connectionist techniques take advantage
of what are believed to be the strong points of each of the two approaches: the powerful discrimination-based
learning of connectionist networks and the time-alignment capability of HMMs. Connectionist Viterbi Training
(CVT) is a simple variation of Viterbi training which uses a back-propagation network to represent the output
distributions associated with the transitions in the HMM. The work reported here represents the culmination of
three years of investigation of various means by which HMMs and neural networks (NNs) can be combined for
continuous speech recognition. This paper describes the CVT procedure, discusses the factors most important
to its design and reports its recognition performance. Several changes made to the system over the past year
are reported here, including: (1) the change from recurrent to non-recurrent. NNs, (2) the change {from SpHINX-
style phone-based HMMs to word-based HMMS, (3) the addition of a corrective training procedure, and (3) the
addition of an alternate model for every word. The C'VT systern, incorporating these changes, achieves 99.1%
word accuracy and 98.0% string accuracy on the TI/NBS Connected Digits task (“TI Digits”).

1. Imtroduction - The Hybrid Approach

Recent work in continuous speech recognition has focused on augmenting existing hidden Markov model (HMM)
based techniques with other methods. One direction this research has taken is towards the use of powerful
discrimination methods instead of the Maximum Likelihood Estimation (MLE) procedures typically used for
training HMMs. Since speech recognition entails discruminating among speech units, learning procedures which
are defined explicitly in terms of performing a discrimination task may be better suited to the task than MLE.

Another focus of recent work with HMM-based speech recognizers has been on modeling speech parameters
directly, rather than using the drastically reduced representations of the speech signal produced by vector
quantization (VQ). Systems which vector quantize have a distinct disadvantage, being deprived of information
which may be of use in the recognition process. One approach to this problem has been to use continuous
density HMMs. However, these systems incorporate assumptions about the distributions of speech parameters
which may be inaccurate. (See [1].)

Connectionist learning procedures are designed to perform accurate discrimination, and they operate directly
on real-valued parameters, without making any strong assumptions about the distributions of these parameters.
Since the energy functions typically used in connectionist learning maxitnize the system’s ability to discriminate
among classes of input patterns, these procedures are well suited to speech recoguition applications, in which
the usual goal is to discriminate among words or phones. Most connectionist models include inputs defined over
a continuous range of real numbers and exhibit no advantage with discrete inputs. Integrating these models into
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HMMs can relieve the need for VQ, while adding discrimination-based learning. Hence, such hybrid methods
have been the subject of a great deal of recent investigation (e.g., [2, 3]).

In building hybrid connectionist/HMM systems, speech recognition is viewed as a stalic pattern classification
problem combined with a time alignment problem. These systems take advantage of the ability of connectionist
networks to discriminate accurately among classes in static pattern classification problems. They use HMM
technology to find the optimal time alignment based upon the output of the connectionist component of the
system.

In this paper, we describe the Connectionist Viterbi Training (CVT) procedure, which is one such hybrid
system. We present a general overview of the system, describe its components, and report a series of recent
experiments in which we improved the performance of the system by more than 50% on the T} Digits task.

2. System Overview

The CVT system consists of a neural network (NN} and a hidden Markov model (HMM). These two components
are not independent; the training of each depends on the other.

A fundamental idea underlying the architecture of the CVT system is that the connectionist section of the
system performs a speech classification task and the HMM part of the systern performs a lime alignment task.

In the earliest version of this system, the NN looked at a wide window of speech and produced as its output
a hypothesis about the identity of the word in its input window. These hypotheses were generated for input
windows in every position on the input data. Then, a viterbi search was used to find the optimal path through
these hypotheses. In this version of the systeni, the NN and HMM components were entirely independent; the
outputs of the NN were simply passed for processing to the HMM.

In the most recent version of the CVT syster, the two components of training are integrated. The outputs
of the neural network no longer correspond to linguistic entities (as they did in a previous version of the system,
which had output units corresponding to words and phones); they now are delined in terus of the HMM
architecture. Each NN output unit maps to one transition in the HMM.

The vector of output units R Each column of data A Viterbi search is used
for each frame fills in one The fumbers in'this in the table lists the | 10 match frames of
column of the table at table -- outputs of th output probabilities speech with
right. - | | NN -- are the output for all the transitions transitions in the
probabilities associa- in the HMM at some HMM.
ted with the lrln7uons time £
i thg H) 9 L 3
. transi-
a—— transi- tions
tions | s, .
— S time ——— output time proba:;‘Iiri::
probabilities
neural
etwork
C 1L C 1C—/——¢C ]
frames of input speech (each 20 ms of LPC CEP) Figure 1b: HMM alignment of speech

Figure 1a: NN Generation of Output Probabilities

Figures la and 1D illustrate the the primary components of the system. In the first phase of processing, the
system passes one frame of speech (along with several frames of context) to the NN, which outputs a vector
of floating point numbers; this vector will serve as the output probabilities for the HMM. In the second phase
of processing, once one vector of output probabilities has been generated for every frame of input speech, a
Viterbi alignment. is performed (o determine the most likely path through the HMM. During training, this is a
“forced alignment” (i.e. forced to pass through the correct word sequence), and the results of the aligninent are
used for re-training the NN. During recognition, the Viterbi alignment is free to pass through all words, and
the sentence recognized is deternmined by observing the words entered.

3. The TI Digits Task
The Texas Instruments Connected Digits Recognition Task (commonly known as “TI Digits”) has become one

of the standard tasks on which recognition performance of systems is assessed. The database consists of studio-
quality dialectically-balanced recordings of about 10,000 utterances of digit strings ranging in length from one
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to seven. The vocabulary includes the words “one” through “nine,” “oh” and “zero.”

The data, as provided by the NBS, was sampled at 20 KHZ. Before use for training or testing our systemn,
the speech was downsampled to 16 KHz and pre-emphasized with a filter of 1 — 0.97z~!. Then, a Hamming
window with a width of 20 ms was applied every 10 ms. Autocorrelation analysis with order 14 was followed by
LPC analysis with order 14. Finally, 12 LPC-derived cepstral coeflicients and one power value were computed

for each frame.

4. Connectionist Architecture

4.1. Current CVT NN Architecture

The current version of the CVT system uses a four-layer! network which accepts as input 91 speech coefficients
and produces as output 120 floating point numbers between zero and one. The input consists of one 20 ms.
frame of speech with three frames of context on each side (10 ms overlap between adjacent frames), and the
output includes one value for every transition in the HMM. The two hidden layers each contain 34 units. Hence,
the total number of connections in the network is 8,330. The network is illustrated in Figure 2.

One uroi Tor &v One unit for every
bl output distribution

output distribution

units
2nd hidden layer)

currenl /U ms mpu
window | H@-1)
Figure 2: Figure 3:
The Network Used in the Current Version of the System The Recurrent Network Used in a Previous Version of the System

The considerations that were made in designing the network included:

1. Choosing the optimal nwmber of layers ~ We found that there was a significant performance benefit for
using four layers instead of three. The classification error rate was reduced by nearly an order of magnitude
when the number of layers in the network was increased from three to four.? The addition of a fourth
layer resulted in a significantly longer training period, due to the slower convergence which is typically
observed is deeper networks.® Adding a fifth layer did not produce any performance benefit and increased

the training time by an order of magnitude over that of the four-layer network.

2. Choosing the optimal number of units per hidden layer - We found that the recognition performance of
the network did not depend on the number of units in each hidden layer. However, when there were very
few units in each hidden layer {fewer than ten), the convergence of the network was so slow that we were
unable to complete training. *

3. Choosing between recurrence and non-recurrence (and the structure of the recurrenl mechanism when
present)— We have performed extensive investigations of the benefits of various types of recurrent networks,

"The convention used here is that the term “layer” refers to a layer of unstsin the network: hence, a four-layer network
has three layers of weights.

2This experiment was performed with a network trained to classify 500 ms blocks according to the digit 1o which
they belonged. This network will not be described here.

*This is an empirical observation made by the authors and applies to networks trained for speech recognition. The
same observation has been made by others not working on speech recognition - e.g., Hinton (personal communication).

* A past experiment [5] showed that NN performance on a speech classification task degraded slightly when the number
of hidden units was reduced drastically (to about 2 or 3) and reached a plateau quickly (when the number of hidden
units reached about 8).
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which we will mention only briefly here. We found that the best configuration for a recurrent network
was that shown in Figure 3. This architecture is similar to that described by Elnan [4}; however, in our
network, there are ten groups of “history” or “representation” units, where Elman has only one. In our
experiments, the network was unable to retain information across more than two time steps whei only oue
set of history units was used. The system performed 6% better with the recurrent version of the network
than with the non-recurrent version, but, as discussed below, we felt that the computational cost was too
high to justify this benefit.

4. Determining the topology of connections between layers— Although we have not examined different patterns
of connection in the context of the complete CVT system, we did investigate the impact of using sparse
connections between layers on training data classification performance. We found that accuracy was
degraded by 10 - 50%, as the density of connections between layers varied between the maximum (“fully
connected”) and a pattern of local connections in which each unit had a fan-in of ten.?

5. HMM Architecture

5.1. Current CVT HMM Architecture

In the current version of the system, the HMM architecture is similar to that described by Bakis [5]. The system
uses word models in which each transition corresponds on average to two franes of speech in a word. This is
close to the optimal HMM topology reported by Picone [6] for this task; he found that the best configuration
uses word models with one transition for every frame of speech in a prototypical utterance of the word modeled.
We used half this number of transitions in order to reduce the computational cost of training and recognition.

8.8.8.8...8.80

Figure 4b:
The Bakis-style Word Model upon which our Model is Based

8-8.8-0
o~

Figure 5:
The Phone Model Used in a Previous Version of the System

Figure 4a illustrates the word mnodels used in the current version of the CVT system, and Figure 4b shows
the simpler Bakis-style models upon which our models are based. In our version of the word mwodels, the
duration controls are significantly tighter, since self-loops are not permitted.

As shown in Fig. 4a, every adjacent pair of states (e.g., those labeled a and b in the figure) actually
corresponds to a series of states (illustrated in the lower portion of Fig. 4a). This series of states serves as
a replacement for the self-Joop that would have appeared on state a in the architecture shown in Fig. 4b.
All of the transitions in the series are tied; i.e., they all share the same output probability (and therefore all
correspond to the same output unit in the network). Furthermore, each of the transitions to state b has a
probability associated with it, which allows duration modeling at the state level. (Hence, the original Bakis
architecture shown in Fig. 4b would be equivalent to the design in Fig. 4a if (i) a ceiling were placed on the
number of times a self loop could be taken, and (ii} a probability p(a,n) of taking a self loop @ » times were
calculated.)

OO+ @----0~-0-0

Figure 4a: Our Word Model

*The term “fan-in” refers to the number of incoming connections to a unit.
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5.2. Phone Models vs Word Models

In a previous version of the syster, we used phone-based HMMs with exactly the sanme topology as those used
in the SPHINX system [7]. (See Figure 5.) When we switched from these to the word-based HMMs described
above, the system performance improved by 40%.

The disadvantage of the phone models is that each transition in the HMM has to model a variety of speech
frames, which are not highly localized within words. Specifically, we believe that the disadvantages of the phoune
models are owed to (1) parallel transitions, (2) self-loops, and (3) too few transitions per word; the best HMM
architecture is that which models at the lowest level, with the most rigid correspondence between transitions
and speech.

6. Recent Improvements to the CVT Procedure

6.1. Corrective Training

Using a form of corrective training, we have further reduced the error rate in the new non-recurrent word-based
CVT system by about 6%. The general idea of the corrective training procedure is that emphasis in training
should be placed on sentences in which the system is likely to comnmit recognition errors. This emphasis is
achieved simply by performing extra training on misrecognized sentences. However, given the rate of recognition
errors, there is not a large corpus of misrecognized sentences to use in this manner.

In order to generate more misrecognitions for the corrective training procedure, we suppress correct recogni-
tion of a randorn subset of training sentences; we prevent the Viterbi forced alignment from entering the correct
word at certain randomly selected times. Not only does this augment the size of the corrective-training corpus,
it also produces sentences which are likely to include realistic recognition errors - since the system is in effect
making a “second choice” recognition, which we assurne often corresponds to the sorts of errors made in actual
recoghition.

6.2. Multiple Models

A second training strategy which has proved beneficial yielding a 33%. increase in performance uses mulitiple
models for each word. Once the single-model-per-word system was fully trained, an extra output unit for every
transition in every word was added to the neural network. These weights were set equal to the corresponding
previously trained weights, with the addition of a small (5%) random perturbation. Then, an additional HMM
was created for every word, and these new odels were associated with the new network output units.

CV'T training proceeded as before; however, during the forced alignment phase, the system was permitted
to enter either of the models for a word, based on the network scores. Hence, the systern was able to develop
models specialized for two primary pronunciations of each word. For example, we observed that the word
‘eight” (phonetically represeuted as /ay/ /t/) has two primary pronunciations: one in which the final stop is
strongly pronounced and another in which it is hardly detectable. Using the new system configuration, the two
pronunciations could be modeled separately.

7. Results & Conclusion

Table 1 is a summary of the performance of the CVT system on the TI Digits task, showing the changes in
performance which accompanied the recent changes to the system. The current version of the system achieves
99.1% word accuracy and 98.0% string accuracy on the TI Digits.

The goal of this work was to build a continuous-speech recognition systens which combined the pattern-
classification ability of connectionist networks with the time-alignment ability of hidden Markov nmiodels. We
began with a system built of two distinct components: a NN frame classifier, and an HMM post-processor.
Then, using the Connectionist Viterbi Training procedure, we integrated the training of the two parts of the
system, such that the classification task being performed by the NN was in effect controlied by the HMM.

1859



Word String Incremental
Accuracy | Accuracy | Improvement
Baseline 98.5 95.0
CVT System 1990
- recurrence 98.0 94.7 -6%
+ word models 98.7 96.8 +40%
+ corrective 98.8 97.0 +6%
training
+ multiple 99.1 98.0 +33%
models

Table 1: Recent Improvements in Results on TI Digits

In making the most recent revisions to the system, we have reached several conclusions, which may be
extensible to other approaches and other tasks as well: (1) that modeling speech at the lowest level possible
appears to produce the best results and, when permitted by the task (i.e., when the vocabulary is sufficiently
small and the size of the training corpus sufficiently large), word-based HMMs should be used in place of phone-
based HMMs, (2) that the perforinance of non-recurrent NNs is only slightly worse than recurrent NNs, and
the former allows a significant computational saving, (3) that a corrective training procedure can reduce the
error rate by providing additional training on error-prone data, and (4) that using multiple models per word
can result in a higher overall recognition rate, by allowing distinct representations of different. pronunciations
or different speaker characteristics.

The most general conclusion to be drawn from this work is that NN-HMM hybrid systems show great
promise in the domain of continuous speech recognition. These systems, which have been under investigation
for only about three years, have already achieved error rates within one order of inagnitude of the best results
on a task for which HMM-based recognizers have been under development for nearly a decade. This early
success suggests that these hybrid systems may be one of the most viable means for performing high-accuracy
continuous speech recognition.
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