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ABSTRACT

While human-to-human communication takes advantage of an
abundance of information and cues, human-computer interac-
tion is limited to only a few input modalities (usually only
keyboard and mouse) and provides little flexibility as to
choice of communication modality. In this paper, we present
an overview of a family of research projects we are undertak-
ing at Carnegie Mellon and Karlsruhe University to overcome
some of these human-computer communication barriers. Mul-
timodal interfaces are to include not only typing, but speech,
lip-reading, eye-tracking, face recognition and tracking, and
gesture and handwriting recognition. Initial experiments
aimed at exploiting the complementary nature of these alter-
nate modalities in interpreting user intent in a user interface
are discussed.

KEYWORDS: Multiple modalities, multimodal interface,
speech recognition, lip-reading, eye-tracking, gesture recogni-
tion, handwriting recognition.

1. INTRODUCTION

With multimedia workstations and high-speed data-links com-
ing of age, we expect delivery and transmission of informa-
tion to improve dramatically over the coming years. What is
sorely lacking is the capture of information or the analysis and
interpretation of human communicative signals. Human inter-
action is characterized by a multiplicity of signals, which gen-
erate redundant and complementary information that makes
human communication robust, flexible and natural. To endow
computer interfaces with similar flexibility, robustness and
naturalness, we have begun to develop multimodal human-
machine interfaces that incorporate human gesture, lip and
face recognition, as well as hand modeling, character recogni-
tion and eye-tracking to understand the underlying intent and
goals of the human user. Such multimodal interfaces are
expected to be useful in human-to-human communication
(e.g., video conferencing, speech translation), but also in
human-computer interaction, such as database access,
appointment scheduling, document production, CAD-design,
operating machinery, etc.

In the following paper, we describe these efforts. We will
begin by briefly describing the processing and recognition
algorithms developed to recognize and understand each
modality individually, e.g., speech recognition systems, lip-
readers, eye-trackers, character and gesture recognizers. We

will then describe first experiments aimed at combining some
of these sources of information. and demonstrate that even in
limited cases and domains, improvements can be obtained
from combining complementary communication modalities.

2. PROCESSING OF DIFFERENT INPUT
MODALITIES

2.1 Speech Recognition

Foremost among human communication modalities, speech
and language undoubtedly carries a significant part if not most
of the information in human communication. A multimodal
human-computer interface should certainly take advantage of
state-of-the-art speech understanding front ends. At Carnegie
Mellon several approaches toward robust high performance
speech recognition is under way. They include Hidden
Markov Models (HMM) and several hybrid connectionist and
statistical techniques. Several applications of speech process-
ing is also under investigation, amongst them large vocabu-
lary speech recognition, special vocabulary recognition and
word spotting. Some of these will be described in the follow-
ing.

2.1.1 Large Vocabulary Continuous Speech Recognition

Amongst the pure HMM systems, the Sphinx system is avail-
able as a large vocabulary speaker independent speech recog-
nition server [9]. Some experiments aimed at speech interface
design are carried out using this server. Several additional
experiments exploring Learning Vector Quantization (LVQ-2)
and Multi-State Time Delay Neural Network (MS-TDNN)
and some other connectionist models are under way to attempt
to provide highest acoustic phonetic recognition performance
for large vocabulary continuous speech recognition [18][22].

Following acoustic phonetic modeling, an efficient search
algorithms must find the most likely word sequence in real
time. The search module of the recognizer builds a sorted list
of sentence hypotheses using the word-dependent N-best
algorithm [1]. The resulting N-best list is resorted using tri-
grams to further improve results. Resorting improves the
word accuracy for the best scoring hypothesis (created using
smoothed bigrams) from 91.5% to 98.8% [22] on a confer-
ence registration task [18]. Speed and memory requirements
have been dramatically improved from earlier versions by
using information collected in the first-best search for aggres-
sive pruning in the N-best search; by dynamically adapting
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the beam width to keep the number of active states constant;
and by carefully avoiding the evaluation of states in large
inactive regions of words. Although the number of computed
hypotheses was increased from 6 to 100, the time required for
their computation was reduced from typically 3 minutes to 3
seconds. Beyond improving acoustic recognition, the N-best
search can also be used effectively for disambiguation and
rescoring using multimodal information.

2.1.2 Word Spotting

Word spotting systems for continuous, speaker independent
speech recognition are becoming more and more popular
[13][21] because of the many advantages they afford over
more conventional large scale speech recognition systems.
Because of their small vocabulary and size, they offer a practi-
cal and efficient solution for many speech recognition prob-
lems that depend on the accurate recognition of a few
important keywords. At Carnegie Mellon we have imple-
mented and tested such a system on two spontaneous continu-
ous speech databases (Zeppenfeld et al. [23][24]).

The word spotting system architecture is based upon the Time
Delay Neural Network (TDNN) [17], and more recently the
Multi-State Time Delay Neural Network (MS-TDNN)
[6][23]. A diagram of the basic network architecture is shown
in Figure 1. [24] presents several recent improvements such as
training with noise, average spectrum removal, equal occur-
rence keyword training, word duration modelling, state dura-
tion modelling, enforced minimum state durations, training
with context frames, and keyword variant modeling.

Training and testing of the system was performed on two sep-
arate databases, the Roadrally corpus, and the new Switch-
board corpus [24]. The system’s performance is measured by
plotting the keyword detection rate for several false alarm
rates per keyword per hour (fa/(kw*hr)). By changing the

Figure 1: Word-Spotter System Architecture

thresholds of the word-output units, the detection rate can be
improved at the expense of increasing the number of false
alarms. The Figure of Merit (FOM) for the system is the aver-
aged keyword detection rate over the false alarms from 0 to 10
fa/(kw*hr). Our system achieves an FOM = 72.2% for the
Roadrally corpus and 50.9% on the much more difficult
Switchboard corpus [24]. These figures compare favorably to
those of other keyword spotting systems in its class evaluated
by DARPA.

Our word spotting system has proved to be a viable alternative
to the much larger full vocabulary speech recognition sys-
tems. With relatively few parameters we are able to achieve
good performance and speed in recognizing select keywords
on noisy, telephone quality spontaneous recordings.

2.2 Lip-reading

Most approaches to automated speech perception are very
sensitive to background noise or fail totally when more than
one speaker talk simultaneously (cocktail-party effect), as it
often happens in offices, conference rooms, outdoors, and
other real-world environments. Humans deal with these dis-
tortions by considering additional sources such as context
information and visual information, such as lip movements.
This latter source is subconsciously involved in the recogni-
tion process and is even more important for hearing-impaired
people, but also contributes significantly to normal hearing
recognition.

In order to exploit lip-reading as a source of information com-
plementary to speech, we developed a lip-reading system
based on the MS-TDNN and testing it on a letter spelling task
for the German alphabet (Bregler et al. [4]). The recognition
performance is understandably poor (31% using lip-reading
only) because some phonemes cannot be distinguished using
pure visual information; however, the thrust of this work is to
show how a state-of-the-art speech recognition system can be
significantly improved by considering additional visual infor-
mation in the recognition process. This section presents only
the lip-reading component; its combination with speech rec-
ognition is described in a later section.

We arranged to record acoustic and visual data in parallel (see
Figure 7 in section 3.1). The video images covering the full
face of the speaker are recorded in real-time (30 frames/sec)
and saved as 256x256 pixel images with 8-bit grey-level
information per pixel. We applied two alternative preprocess-
ing techniques: histogram normalized grey-value coding and
2-dimensional Fourier transformation [4], performed on an
area of interest (AOI) centered around the lips.

As recognition system we use a modular MS-TDNN (see Fig-
ure 6 in section 3.1). The visual information is processed by
one of two front-end TDNN’s. The classification is based on
“visemes”, or the smallest set of visually distinguishable units
in speech, which is a subset of phonemes.

Simulation results are presented in section 3.1. Related papers
are listed in [4].



2.3 Eye-tracking

The goal of gaze tracking is to determine where a person is
looking from the appearance of his eye. Two potential uses of
a gaze tracker are as an alternative to the mouse as an input
modality [20] and as an analysis tool for human-computer
interaction studies [11]. The direction of eye fixation can also
be used to determine the user’s focus of attention in a multi-
modal interface; for instance, knowing whether the user is
looking at the screen or somewhere else while talking may be
important in deciding whether automated speech recognition
should be activated.

The most accurate gaze tracking so far has come from intru-
sive systems which either require the subject to keep their
head stable, through chin rests etc., or systems which require
the user to wear cumbersome equipment, ranging from special
contact lenses to a camera placed on the user’s head to moni-
tor the eye. At Carnegie Mellon we have developed a neural-
network-based non-intrusive gaze tracker based on camera
input only (Baluja and Pomerleau [2]); the user is neither
required to wear any special equipment, nor required to keep
his head still.

Input to the system comes from a camera mounted on top of
the computer monitor. An infrared light source creates a spec-
ular reflection on the eye. The gaze direction can be computed
from the relative positions of the reflection and the pupil’s
center; the system performs this computation using a neural
network. One of the primary benefits of the NN based gaze
tracker is that it is non-intrusive; the user is allowed to move
his head freely. In order to account for the shifts in the relative
positions of the camera and the eye, the system searches for
the specular reflection in the eye image and extracts a 15x30
window surrounding the reflection. The 15x30 window con-
taining the image of the eye is used as the input to the neural
network (see Figure 2). The output units are organized with 50
output units for specifying the X coordinate, and 50 units for
the Y coordinate. The gaussian output representation used is
similar to that used in ALVINN [12]. Training is performed by
backpropagation [2].

50 X output
Unit s

50 Y output
Unit s

4 Hidden
Unit s

15x30
Input
Ret ina

Figure 2: Network Architecture for Gaze Tracking

The current system works at 10 Hz. The best accuracy we
have achieved is 1.5 degrees with the freedom of head move-
ment up to 30 cm. Although we have not yet matched the best
gaze tracking systems, which have achieved approximately
0.75 degree accuracy, our system is non-intrusive, and does
not require the expensive hardware which many other systems
require.

2.4 Gesture Recognition

We have been investigating pen-based gestures drawn using a
stylus on a digitizing tablet. We developed a multimodal text
editor capable of recognizing speech and gesture commands
(Vo and Waibel [16]). The gesture component of the editor
currently supports 8 gestures (see Table 1).

2.4.1 Input Representation and Preprocessing

We use a temporal representation of gestures, i.e. a sequence
of coordinates tracking the stylus as it moves over the tablet’s
surface, as opposed to a static bitmapped representation of the
shape of the gesture. This dynamic representation was moti-
vated by its successful use in handwritten character recogni-
tion [5]. Results of experiments described in that work
suggest that the time-sequential signal contains more informa-
tion relevant to classification than the static image, leading to
better performance.

In our current implementation, the stream of data from the
digitizing tablet is preprocessed [5] by normalizing and resa-
mpling the coordinates to eliminate differences in size and
drawing speed, and extracting local geometric information
such as the direction of pen movement and the curvature of
the trajectory. These features are believed to hold discrimina-
tory information that could help in the recognition process.

2.4.2 Gesture Classification Using Neural Networks

We use a TDNN [17] (see Figure 3) to classify each prepro-
cessed time-sequential signal as a gesture among the pre-
defined set of 8 gestures. Each gesture in the set is represented
by an output neuron. The network is trained on a set of manu-
ally-classified gestures using a modified backpropagation
algorithm [17]. The output neuron with the highest activation
level determines the recognized gesture.

Our gesture recognizer achieves 98.9% recognition rate on the
training data set (640 samples) and 98.8% on an independent
test set (160 samples).

2.5 Handwriting Recognition

The recognition of continuous handwriting, as it is being writ-

Select Begin selection
Delete End selection
Delete Transpose
Paste Split line

Table 1: Text-Editing Gestures



ten on a touch screen or digitizing tablet, has not only scien-
tific but also enormous practical value, such as for note pad
computers or for integration into multimodal systems. The
main advantage of on-line handwriting recognition is that
temporal information of writing can be recorded and used for
recognition, much like for gestures as presented above. Hand-
written words can be represented as a time-ordered sequence
of coordinates with varying speed and pressure in each coor-
dinate. Like in speech recognition the main problem of recog-
nizing continuous words is that character or stroke boundaries
are not known (in particular if no pen lifts or white space indi-
cate these boundaries) and an optimal time alignment has to
be found.

The TDNN [17] has been applied successfully for on-line sin-
gle character recognition [5]. With single character, no auto-
matic segmentation is necessary; however, some conflicts
may arise that are unresolvable without context information.
For instance, it is impossible to distinguish among “o”, “O”,
and “0” by looking at a character in isolation.
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Figure 3: TDNN Architecture for Gesture Recognition

a0a1a2b0b1b2
z0z1z2

z0z1z2e0e1e2r0r1r2o0o1o2

o0o1o2n0n1n2e0e1e2

“zero” “one”

z e r o
o n e

time

input

hidden

states

DTWlayer

...

... Tim
e D

elay N
eural N

etw
ork

D
ynam

ic Tim
e W

arping

YY
scores

...

layer

layer

layer

Figure 4: MS-TDNN for Handwriting Recognition

The MS-TDNN [6] was applied successfully to overcome the
problem of recognizing continuous (cursive) handwriting
(Bodenhausen and Manke [3]). This problem is much more
difficult than the single character problem because of the need
for automatic segmentation; however, it is possible to resolve
the type of conflicts presented above using context. The MS-
TDNN integrates the recognition and segmentation processes
by combining the high accuracy character recognition capa-
bilities of a TDNN with a non-linear time alignment proce-
dure (Dynamic Time Warping) [10] for finding an optimal
alignment between strokes and characters in handwritten con-
tinuous words (see Figure 4). In the most recent experiments,
we achieved up to 94.7% word recognition rate on a database
of 400 handwritten words.

2.6 Incremental Learning in Gesture/Handwriting
Recognition

The usefulness of gesture and handwriting recognition
depends largely on the ability to adapt to new users because of
the great range of variability in the way individuals write or
make gestures. No matter how many tokens we put in the
training database to cover different gestures that mean “delete
text”, for example, there may always be totally different ges-
tures that are not yet part of the gesture vocabulary. This is
particularly troublesome for neural network-based systems
because usually the network has to be retrained using all the
old training data mixed with a large number of new examples,
in order to be able to recognize new patterns without cata-
strophically forgetting previously learned patterns. Because of
the large number of examples needed and the long retraining
time, this clearly cannot be done on-line in a way that would
enable the user to continue to work productively. A good sys-
tem should be able to query the user for correction and
remember this particular input pattern in order to make intelli-
gent guesses when similar inputs occur; during the subsequent
work sessions new data can be quietly collected for off-line
training of a regular network that will do a better job later on..

We have developed a method to accomplish this using an
Incremental TDNN (ITDNN) architecture. A regular TDNN
is trained using the available data as a base network. When a
recognition error occurs during use, the system queries the
user for the correct output and creates template-matching hid-
den units that influence the output units via excitatory or
inhibitory connections (see Figure 5). In experiments involv-
ing a simple handwritten digit recognition task, we presented
the base network with examples of an input pattern it had

Extra unit

Excitatory connection
(weight > 0)

Figure 5: The Incremental TDNN Architecture



never seen before. The recognition rate on this data set was
near zero. With a single additional hidden unit, the network
was able to recognize 97% of these new patterns with a per-
formance drop of only 0.4% on the old training data set

These experiments show that the ITDNN is capable of quickly
adding coverage for a new input variation without forgetting
previously learned information and thus is a good candidate
for systems requiring on-line, immediate recognition
improvements during use.

3. COMBINATION OF MODALITIES

Beyond better recognizing and understanding each human
communication event individually, we are mostly interested in
combining multiple modalities to improve robustness and
flexibility by offering complementary information. Several
experiments aimed at such multimodal synergies have been
undertaken.

3.1 Speech Recognition and Lip-reading

The lip-reading system described in section 2.2 is actually one
half of a speech perception system using both acoustic and
visual signals. The system was constructed for the connected
German letter spelling task which features a small but highly
ambiguous vocabulary, with no grammar or other high-level
information. The system is described in detail in [4].

The system shown in Figure 6 is based on a modular MS-
TDNN architecture [8]. The preprocessed acoustic and visual
data are fed into two front-end TDNN’s [17], respectively.
Backpropagation is used to train the networks separately in a
bootstrapping phase, to fit phoneme targets. The last layers
(phone-state layers) of the TDNN’s are combined using
“entropy weights” [4], and the DTW algorithm [10] is applied
to find the optimal path of phone-hypotheses for the word
models. A second training phase backpropagates the error

derivatives from the letter units through the best DTW path
down to the front-end TDNN’s, in order to optimize the over-
all network for the actual evaluation task, which is letter and
not phoneme recognition.

We obtained data to train and test the system using a bimodal
data acquisition procedure (Figure 7) in which acoustic and
visual data are recorded in parallel. Visual data acquisition
and preprocessing was described in section 2.2. The acoustic
data is sampled at a 16-kHz rate and 12-bit resolution. For
acoustic preprocessing we follow the established approach of
applying the Fast Fourier Transform (FFT) on the Hamming-
windowed speech data in order to get 16 Melscale Fourier
coefficients at a 10-ms frame rate. Our database consists of 2
sets of 114 and 350 letter sequences (names and random
sequences) respectively, spelled by two male speakers. The
first data set was split into 75 training and 39 test sequences;
the second set was split into 200 training and 150 test
sequences. Table 2 summarizes the recognition performance
results on the sentence level. It can be seen that the additional
visual information can help reduce the error rate by 40-50%,

Figure 6: Speech Recognition/Lip-reading System

Acoustic TDNN Visual TDNN

Phoneme/Viseme
State Layer

Hidden Layer

Input Layer

Combined Layer

DTW Layer

Letter Hypotheses (26 German Letters)

Figure 7: Bimodal Data Acquisition for Speech Recognition and Lip-reading



especially in the presence of noise.

3.2 Speech and Gesture Recognition

Joint interpretation of multimodal events was successfully
demonstrated in our speech- and gesture-based text editor
[16]. Figure 8 shows a block diagram of the multimodal inter-
preter module.

The TDNN-based gesture recognizer was described in section
2.4. For the speech component we use the word spotter (sec-
tion 2.1.2) coupled with a semantic-fragment parser [19]. The
word spotter was trained to spot 11 keywords representing
editing commands such as move, delete,... and textual units
such as character, word,... The effect is to let the user speak
naturally without having to worry about grammar and vocabu-
lary, as long as the utterance contains the relevant keywords.
For example, an utterance such as “Please delete this word for
me” is completely equivalent to “Delete word”.

We based the interpretation of multimodal inputs on frames
consisting of slots representing parts of an interpretation. The
speech and gesture recognizers produce partial hypotheses in
the form of partially filled frames. The output of the inter-
preter is obtained by unifying the information contained in the
partial frames.

Consider an example in which a user draws a circle and says
“Please delete this word”. The gesture-processing subsystem
recognizes the circle and fills in the command scope (what to
operate on) specified by the circle in the gesture frame. The
word spotter produces “delete word”, from which the parser
fills in the action and textual unit slot in the speech frame. The
frame merger then outputs a unified frame indicating that the
operation delete is to be carried out on the word specified by
the scope of the circle.

One important advantage of this frame-based approach is its
flexibility, which will facilitate the integration of more than
two modalities. All we have to do is define a general frame for
interpretation and specify the ways in which slots can be filled
by each input modality. In a general implementation, it is pos-

Acoustic Visual Combined

msm/clean 88.8 31.6 93.2
msm/noisy 47.2 31.6 75.6
mcb/clean 97.0 46.9 97.2
mcb/noisy 59.0 46.9 69.6

Table 2: Word Accuracy of Speech/Lip System

Gesture
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Word spotter
& Parser

Frame
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Command
interpreter

gesture

speech
frame

frame
unified
frame

Figure 8: Joint Interpretation of Gesture and Speech

sible that the slots may be filled in different ways, and per-
forming a search to find the best merge would be superior.

4. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have reported on a number of experiments
aimed at integrating multiple sources of sensory information
into joint multimodal human computer interfaces. Combining
modalities could be seen to

• improve recognition performance significantly by
exploiting redundancy (e.g. speech & lip-reading)

• provide greater expressiveness and flexibility by
exploiting complementary information in different
modalities (e.g. speech & gesture)

• improve understanding in allowing for complementary
modalities to take effect.

While our experiments are encouraging, much remains to be
done. In addition to continuing improvements on the underly-
ing pattern processing methods, we are beginning to scale our
experiments to larger, less constrained human computer inter-
faces. To assess the relative effectiveness of individual modal-
ities in different tasks, we are beginning to perform user
studies interactively, while designing systems that support
promising multimodal enhancements. Wizard-of-Oz-style
simulations of potential interfaces may be used to investigate
user preferences, short of having a finished system. Further
research on capturing sensory information more flexibly and
combining it more robustly is also under way. Amongst them
are face-tracking and recognition algorithms, that derive
visual information on eye and lip motion, and acoustic speech
information, even when more than one speaker move about
the room.
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