TUNING BY DOING: FLEXIBILITY THROUGH AUTOMATIC STRUCTURE OPTIMIZATION

Ulrich Bodenhausen and Alex Waibel
University of Karlsruhe, Computer Science Department,
[LKD, 7500 Karlsruhe 1, Germany

and

School of Computer Science, Camegie Mellon University,
Pittisburgh, PA 15213, USA

ABSTRACT

The successful application of speech recognition systems to
new domains greatly depends on the tuning of the architecture
to the new task, especially if the amount of training data is
small. In this paper we present 1.) an improved version of our
Automatic Stucture Optimization (ASO) algorithm that does
this wning automatically and 2.) a new Autornatic Validation
Analyzing Control System (AVACS) that is designed to detect
poorly generalizing models as early as possible and to selec-
tively change their learning and automatic structuring process.
ASO and AVACS were applied to a Multi State Time Delay
Neural Network and could improve the generalizaton perfor-
mance of an already handtuned architecture from 85% to
92.3% on an alphabet recognition task,

L. INTRODUCTION

Despite the aim to develop general purpose, speaker indepen-
dent, very large vocabulary speech recognition systems, there
is also a considerable number of applications that require the
best possible recognition accuracy on a small, well defined, and
customized domain. Achieving the best possible performance
with HMMs, Neural Networks, or hybrid systems greatly
depends on the tuning of the architecture to the particular task,
especially if the amount of training data is small (which is often
true for customized applications). In this paper we present

* an improved version of our Automatic Structure Optimiza-
tion (ASO) algorithm [1], [2], [3] that does this tuning auto-
matically for neural network speech recognition systems
and

= anew Automatic Validation Analyzing Control System
(AVACS) that is designed to detect poorly generalizing
models on a class by class basis as early as possible and w
selectively change their learning and automatic structuring
process.

AVACS is an attempt towards better teaching methods for arti-
ficial neural networks. Instead of only presenting examples that
have to be learned by the network, the system is frequently
tested with a validation set to identify models that seem to learn
well, but do not lead to good generalization, While a validation
set is used in many other systems to determine the stopping cri-
terion (by training until the maximum validation performance
1s reached), we extend the use of this set and propose a compar-
ison of the confusion matrices on train and validation set to
selectively detect the classes that generalize poorly. Because of
- the constructive method that is used by ASQO it is then possible

1485

to identify all resources that contribute to these classes and
restructure and/or retrain them.,

In addition to the advantage of offering an automatic architec-
ture optimization that is automatically validated and controlled,
our approach also offers an attempt towards controlled error
equalization. Consider a speech recognition task with 50 words
only. Although a recognition performance of 94% does not
sound that bad it is highly undesirable if all errors occur for
three words only. AVACS detects these kinds of irregularities
and tells the learning/structuring module that something is
going wrong.

2. THE AUTOMATIC STRUCTURE
OPTIMIZATION ALGORITHM (ASO)

For the applicaton of neural networks to speech recognition all
of the following architectural parameters have to be well
adapted to the task and the given amount of training data (see
Fig. 1)

+« the number of hidden units,

- the size of input windows and

+ the number of states that model an acoustic event.

The ASO algorithm automatically adapts all of these architec-
tural parameters to the given task and amount of training data
in a single training run. The algorithm offers the flexibility 1o
apply neural net speech recognition systems to new domains
without the need for manual tuning of the architecture.

The ASO algorithm tries to optimize the architecture of the
system for best possible generalization performance. Accord-
ing to Moody [6], the expected error on the test set can be
approximated as follows:

Pefy

(A)) +2cf¢ff

(frd“’i

(Eu!.s't (A))gg- (1)

where n is the number of training exemplars in the training set

E, U’cﬂ

able(s), A is a regularization or weight decay parameter, and
Poy 15 the effective number of parameters in a nonlinear
model.

The idea of the ASO algorithm i3 to start with a small number
of parameters for the given number of waining exemplars
(leading to a small second summand on the right side of the
above equation) and increasing this number o decrease the

is the effective noise variance in the response vari-

how

MSTDNN
| { states for
E s
DTW, AN /ﬁ?‘:\\ | the
L] L ; e tﬁ Ei ng’?
|
i how
TDNN = -
e = o hidden
units?
spectrogram
time

how much temporal context
from the spectrogram?

Fig. 1: Overview of the speech recognizer (Multi-State
Time Delay Neural Network [MSTDNN] which combines
a Time Delay Neural Network [TDNN] with Dynamic
Time Warping [DTW]) and the relevant architectural
parameters for the optimization process: 1.) How much
temporal context is needed from spectrogram? 2.) How
many hidden units are necessary for the mapping? 3.) How
many states are necessary for the sequential modeling?

expected error on the training set (the first summand in the
above equation). The goal is to increase the second summand
and to decrease the first summand until the best possible com-
promise between a low training error and a high number of
parameters is reached.

The ASO algorithm uses the following tuning strategies:

+ The time-shift invariance of the task are used to reduce the
number of trainable parameters and to avoid learning of
undesired features from the training data (like the length of
phonemes).

- The confusion matrix on the training data is evaluated to
selectively improve certain parts of the acoustic modeling.

- The number of states is increased if the acoustic modeling
is too complex for the given number of states,

- Hidden units with sigmoid activation function are allocated
1o specifically solve pairwise confusions (class “A” is con-
fused with class “B” and vice versa) which are caused by
inadequate decision boundaries. The approach is similar to
the Boundary Hunting Radial Basis Function classifier [4].
The hidden units are added additionally to the direct con-
nections between the input and the state units .

- The criterion for the allocation of resources is modified
depending on the quotient p,,,.,/n, where p, ., is the

total number of parameters and n is the number of training
pattemns,
Unlike the human developer, the ASQ algorithm starts making
decisions about resource allocations very early in the taining

1486

Confusion Marrix on
Training Data

Confusion-Symme-
try Matrix on Train-
ing Data

satisfactory?
no_

satisfactory?
no

increase the size of
the input windows of
the state units with

allocate a hidden unit
for the most severe
pairwise confusion

poor performance
satisfactory’ satisfactory
ne no

increase the number
of states for the class
with poor perfor-

increase the input
window of the hidden
unit

mance

Fig 2: The default order in which resources are allocared
by the ASO algorithm. The elements of the confusion

Symmery matrix s; ; are computed from the elements ¢; i

of the confusion matrix as S5 = Cuth

run, i.. it i tuning the architecture while the network is learn-
ing the task (“tuning by doing”). This allows the algorithm to
complete the optimization process in a single training run.

The default order in which resources are allocated is as fol-
lows: At first, the size of the input windows is incremented
depending on the confusion matrix on the training data. If a
certain class performs worse than the average class the width of
the input windows is incremented by one frame. This proce-
dure is repeated in the following epochs. If the size of the input
windows gets close to the average duration of the sound that
the corresponding state unit is modeling and the performance is
still not satisfactory, then a new state unit is added. The size of
the input window of the first state is halved (to avoid a dramatic
increase in the number of parameters). The input window of
the new state is gets the same size as the window of the first
state, but with randomly initialized connections,

Hidden units are allocated berween the input and the state units
in addiron to the direct connections from the input to the state
units (similar to the Cascade Correlation Algorithm [5]). The
allocation is dependent on the pairwise confusion (class “A" is
confused with class “B" and vice versa). The size of the input
window of the new hidden unit is increased in the following
epochs if the pairwise confusion could not be eliminated.

The default schedule for the allocation of resources is shown
by Fig. 2. It can be altered by the Automatic Validation Analyz-
ing Control System (AVACS, see next paragraph) if it does not
lead to good generalization.

Control
ASO |m—J] AVACS

Trainin Validation
Qutput Output

3

L— | MSTDNN !
Structure |
Training Validation
Data Data

Fig. 3: System overview: The training data is used to train
the Multi State Time Delay Neural Network (MSTDNN).
The output of the MSTDNN on the training data is used by
the Automatic Structure Optimizer (ASO) to change the
structure of the MSTDNN to improve the performance.
The output of the MSTDNN on the training and validation
data 1s used by the Automatric Validation Analyzing Con-
trol System (AVACS) to control ASO such that the general-
ization performance is optimized. Other network
optimization techniques like Optimal Brain Damage or
Optimal Brain Surgeon can be used instead of ASO, too.

3. THE AUTOMATIC VALIDATION
ANALYZING CONTROL SYSTEM (AVACS)

AVACS monitors the learning and tuning process and is
designed to detect poorly generalizing models on a class by
class basis as early as possible (see Fig. 3). A validation set is
used to test the generalization ability of the system frequently
in the raining run. The confusion matrices are computed for
both the raining and the validation data. From these matrices a
new confusion-difference matrix with the elements d!j is com-
puted as follows:

dy = cij(train) = c;j(validation)

(2

where E,-j- are the elements of the confusion matrices normal-
ized by the number of appearances of a particular class in the
data, The interpretation of the difference matrix is straightfor-
ward:

+ Small numbers or positive numbers indicate that the net-
work generalizes well on the validation data. This means
that the network should also generalize well on the final test
setif the validation set is representative for the task. In this
case there is no need to limit the allocation of further
resources to further increase the performance on the train-
ing data. See Fig, 4 for examples. Small numbers are usu-
ally nort visible

= Negative numbers indicate that the performance on the val-
1dation data is worse than the performance on the training
data, which is quite normal depending on the number of
effective parameters, the number of training patterns and
the noise variance of the data [6], [7]. However, it is possi-
ble to detect those classes that generalize worse than other
classes. This could indicate four possible problems:

a4 AN

1.) The ASO algorithm accidentally allocated too many param-
elers.

2.) The particular model does not fit because of initial condi-
tions.

3.) The particular model does not fit because the architecture of
the network does not fit for the task.

4.) The particular model does not fit because of inconsistent
training/validation data. More examples of this particular class
are needed for consistent training of the system.

There are many options for ‘poor generalization recovery’. The
simplest option 1s to contaminate all weights of a certain class
with & certain amount of noise. This method, although very
simple, performed very well in our experiments (with 10 - 30%
noise). Changing the weight decay parameter A is also very
simple and effective.

More sophisticated methods for ‘poor generalization recovery’
were tried, too. For example, it is possible to change the default
order in which resources are allocated (see Fig. 2). Another
option is to completely reinitialize the poorly generalizing parts
of the network and to retrain them. In a limited number of
experiments non of these methods performed better than the
contamination with noise. In a real application it is probably
best to try a certain number of these options and, if none of
these helped, tell the user to collect more training data or to
accept the current generalization capability.

4. SIMULATIONS

The ASO algorithm with AVACS was applied to Multi State
Time-Delay Neural Networks (MSTDNNs, [8], [9]), an exten-
sion of the TDNN [10]. The results are summarized in Table 1.
The ASO algorithm alone could improve the generalization
performance of an already optimized architecture from 85% to
91.7% for an alphabet recognition task with 2200 training pat-
terns, While constructive and pruning methods tend to be very
successful in optimizing tasks with medium-sized training
databases (50 - 500 examples per class), it is much harder 1o
optimize an architecture for extremly small databases (10 - 30
examples per class). The ASO algorithm could still achieve
81.5% with only one quarter of the training data (20 examples
per class = 520 training patterns) because a smaller network
was constructed. AVACS further improved the results on this
extremely small training set (520 training patterns) from 81.5%
to 83.5% in preliminary experiments,

5. DISCUSSION AND CONCLUSIONS

The results with the ASO algorithm alone suggested that the
algorithm can construct efficient architectures in a single train-
ing run that achieve comparable or better recognition accura-
cies than manually tuned- architectures. ASO offers the
flexibility to use a given amount of available training data with-
out the need to manually adapt the architecture to this amount.
The good generalization ability on extremely small taining
sets [2], [3] can be explained by the unequal amount of training
that the weights of the final system have received. Many con-
nections are added late in the training run when the error is
already very low. These connections are never trained by large
error derivatives and their weights remain very close to their
random initialization [3]. The ASO algorithm performs simi-
larly on on-line handwritten character recognition tasks we
have tested [1], [2], [3].

-

i

X O T AR O E I A e e O e Ch e D

N ECCANTO0 BOZ N X ter’s T MM D

Fig. 4: A comparison of typical confusion-difference
matrices for the alphabet recognition task with an
extremely small training set (520 training patterns). The
desired output is shown on the horizontal axis and the out-
put of the network is shown on the vertical axis. White
blobs indicate a poor generalization with the size of the
blob proportional to the value of d; ;» the confusion-differ-

ence (see Eq. 2). Black blobs indicate a better performance
on the validation data than on the training data. A) A hand-
tuned architecture with standard weight decay reached the
best performance on the validation set after 385 epochs
because weight decay tends to slow down learning. Test
performance was 75.7%. B) The architecture optimized by
ASO and AVACS reached the best validation performance
after 175 epochs. Test performance was 83.5%. A compar-
ison of both matrices shows that 1.) ASO plus AVACS
result in better generalization performance and 2.) ASO
plus AVACS lead to fewer ‘serious’ generalization errors
which are indicated by large white blobs in the matrices. A
fixed architecture without weight decay performs even
worse (more serious generalization errors and lower test
performance.

AVACS is an atternpt to improve the learning process by better
analysis of the generalization errors of the system. It has the
following advantages:

=

A validation set and confusion matrices are used in many
systems anyway, so it is easy to implement AVACS.

AVACS can also work with pruning methods (like Optimal
Brain Damuge (OBD)[7] or Optimal Brain Surgeon (OBS)
[11]). AVACS can propose poorly generalizing parts of the
network that would benefit most from OBD or OBS. Thus
the time-consuming computation of second derivatives that

is required by these methods is not necessary for all param-
eters.

+ It can be used to change the weight decay parameter which
can be very useful.

= AVACS can also be used to selectively detect when more
raining data is needed for certain classes.

+ AVACS allows a prediction of likely and less likely general-
1Zalion errors.

Preliminary results on a difficult task (spelled alphabet recogni-
tion with only 20 training examples for each spelled letter)
have been promising, Both proposed methods together (ASO +
AVACS) allow the flexible use of neural networks for custom-
1zed speech applications that require best possible performance
for the given amount of training data (usually small). Further
experiments on other tasks will be made for further evaluation,

TABLE 1. Alphabet Recognition Results Depending On
Training Set Size (Preliminary)
test performance | test performance
(520 training (2200 training
patermns) patterns)
handtuned 75.7% 85.0%
MSTDNN
MSTDNN with 81.5% 91.7%
ASO
MSTDNN with 83.5% 923%
ASO + AVACS
ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of the McDon-
nel-Pew Foundation and would like to thank S, Fahlman, S.
Manke, H. Hild and M.T. Vo.

REFERENCES

[1] U. Bodenhausen and A. Waibel. Application QOriented Automatic Structur-
ing of Time-Delay Neural Networks for High Performance Character and
Spesch Recogmtion. ln: Proceedings [CNN 93, San Francisco, March
1993,

{2] U. Bodenhausen and 3. Manke. Connectionist Architectural Leaming for
High Performance Character and Speech Recognition, In: Procecdings
ICASSP-93, Minneapelis, April 1993,

[3] U. Bodenhausen and &, Manke. Autematieally Structured MNeural Networks
For Handwritten Chameter and Word Recognition. In: Proceedings [CANN
93, Amsterdam, September 1993

[4] E.C. Chen and R.F. Lippmann. A Boundary Hunting Radial Basiz Function
Classifier Which Allocates Centers Constructively. In: Advances in Neural
Information Processing Systems 5, 1893

[5] 8. E. Fahlman and C. Lebiere, The Caseade-Correlation Learning Architec-
ture. [n: Advances in Newral Information Processing Sysiems 2, 1989,

[6] . Moody. The Effective Number of Parameters: An Analysis of Generali-
zation and Regularization in Nonlinear Leaming Systems, In: Advanceas in
Neural Information Processing Systems 4, 1991,

[71 Y. Le Cun, I. § Denker, and 5. A, Sella, Optimal Brain Damage.. In:
Advances in Neural Information Processing Systems 2, 1989,

[8] P. Haffner, M, Franzini, and A. Waibel. Integrating Time Alignment and’
Neural Networks for High Performance Continuous Speech Recognition,
In Proceedings of the ICASSP-91.

{9] P. Haffner and A. Waibel, Time-Delay Nearal Netwarks Embedding Time
Alignment: A Performance Analysis.In: Proceedings Eurospeech 91.

[10] A. Waibel, T. Hanazawa, (3. Hinton, K. Shiano, and K. Lang. Phoneme
Recognition using Time-Delay Neoral Networks. /EEE Transactions on
Acoustics, Speech and Signal Processing, March 1989,

[11] B. Hasaibi and). (7. Stork. Second Order Derjvatives for Network Pran-
ing: Optimal Brain Surgeon. In: Advances in Neural Information Process-
ing Syrtems 5, 1993

