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Abstract-Highly structured artificial neural networks have 
been shown to be superior to fully c o ~ e ~ t e d  networks for real- 
world applications like speech recognition and handwritten 
character recognition. These structured networks can be opti- 
mized in many ways, and have to be optimized for optimal per- 
formance. This makes the manual optimization very time- 
consuming. A highly structured approach is the Multi State 
Time Delay Neural Network (MSTDNN) which uses shifted 
input windows and allows the recognition of sequences of 
ordered events that have to be observed jointly. In this paper 
we propose an Automatic Structure Optimization (ASO) algo- 
rithm and apply it to MSTDNN type networks. The AS0 algo- 
rithm optimizes all relevant parameters of MSTDNNs 
automatically and was successfully tested with three different 
tasks and varying amounts of training data. 

I. INTRODUCTION 

Highly structured artificial neural networks have been 
shown to be superior to fully connected networks for real- 
world applications like speech recognition [ l ,  21 and hand- 
written character recognition [3]. The importance of the net- 
work structure has also recently been examined by Geman et 
al. [4]. They come to the conclusion that “dedicated 
machines are harder to build but easier to train” and suggest 
that important properties of the task have to be built into the 
architecture of the network. Similar conclusions have been 
made by Minsky and Papert [5]. But manual design of inter- 
mediate representations and the network structure can be 
very time-consuming for real-world applications. It may not 
even be possible to optimize the structure before the exact 
application of the user is known. For example, the user might 
try to train a speech recognizer on a language and/or an 
amount of training data that the structure was not optimized 
for I. 

1. See Table 3 for an example: A network that was well optimized for a 
training set of 1170 patterns also genedized reasonably for a training set of 
1560 patterns, but failed to learn a reduced training set of 520 pattems with 
various learning rates and momentums. 
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One reason for the introduction of structure to the net- 
work is the relationship between the number of trainable 
parameters, amount of training data and generalization (see 
[6, 7, 81 and others). Networks with too many trainable 
parameters for the given amount of training data learn well, 
but do not generalize well. This phenomenon is usually 
called overfitting. With too few trainable parameters, the net- 
work fails to learn the training data and performs very poorly 
on the testing data. Imposing structure into the network can 
increase the generalization performance by reducing the 
number of trainable parameters [ 1,2]. 

Unfortunately, highly structured networks can be opti- 
mized in many more ways than fully connected networks. In 
order to achieve optimal performance without time-consum- 
ing manual optimization, we propose an AUTOMATIC 
STRUCTURE OPTIMIZATION (ASO) algorithm that auto- 
matically optimizes the structure and the total number of 
parameters synergetically and also considers the current 
amount of training data. Rather than starting with a distrib- 
uted internal representation, the structure of the network is 
constructed by adding units and connections in order to 
selectively improve certain parts of the network. At the 
beginning of the training run the internal representation is 
completely local and gets more and more distributed in the 
following optimization process. Only a concept for structur- 
ing the network has to be specified before training. The con- 
cept for structuring the network is derived from (simple) 
knowledge about the task, such as invariances. The algo- 
rithm combines a constructive and a pruning method. The 
constructive approach is used to find a network structure that 
is specifically tailored for the task and the current amount of 
training data. Weight decay andor Optimal Brain Damage 
(see next paragraph) can be used to further refine this archi- 
tecture to achieve optimal performance. 

11. PREVIOUS WORK 

Two types of approaches have been proposed for the 
automatic optimization of network architectures: Construc- 
tive algorithms that start with a minimal architecture and 
increase the resources of the network; and algorithms that 
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avoid overfitting by limiting the computational power of 
fixed architectures. 

Multi State Time-Delay Neural Networks (MSTDNNs) [ 14, 
151 that allow the recognition of sequences of ordered events 

Regularization techniques like weight-decay or weight 
elimination [9, 10, 111 belong to the second group. They add 
some complexity measure to the cost function that is opti- 
mized by the learning rule. This can reduce the risk of over- 
fitting the data with too many trainable parameters in the 
network, but the decay or elimination parameter has to be 
well adjusted for optimal results. Optimal Brain Damage 
(OBD) [12] is an algorithm that selectively removes unim- 
portant weights from a network. The basic idea is to use sec- 
ond-derivative information to make a trade-off between 
network complexity and training set error. Although these 
algorithms can improve existing (reasonable architecures) 
considerably, it is not clear whether a foolish network can be 
optimized to state-of-the art performance. 

Constructive algorithms like Cascade Correlation [ 131 
start with a small network and increase the resources during 
the training phase. For example, Cascade Correlation starts 
with no hidden units and tries to solve the classification 
problem without them. If this fails, hidden units are added 
one after the other. 

111. CONCEPT OF THE AUTOMATIC STRUCTURE 
OPTIMIZATION ALGORITHM 

The proposed algorithm is based on four principles: 

built-in invariances 
task decomposition 

0 confusion matrix dependant construction of the network 
0 early constructive changes of the network architecture 

that have to be observed jointly. -Unfortunately, this also 
means another architectural parameter has to be optimized. 

C. Confusion Matrix Dependant Construction of the Net- 
work Architecture: 

It was frequently observed that application-oriented 
researchers using neural networks use the confusion matrix 
of the training data for manual optimization of the network 
architectures. A certain architecture is trainied until the stop- 
ping criterium is reached and then the confusion matrix is 
evaluated. If a structured approach is used (as in many 
speech recognition systems), the modelling can be refined if 
too many errors in a certain class are observed. This kind of 
approach could be very useful for an automatic optimization 
procedure. 

D. Early Constructive Changes of the Network Architecture: 

Waiting for a whole training run and then making deci- 
sions on the further optimization of the network is computa- 
tionally very expensive. Our experience shows that it is 
possible to detect the most important mistakes very early in 
the training run and change the architecture early in the train- 
ing run. Starting the training run again is not necessary. 

IV. APPLICATION OF THE AS0 ALGORITHM TO THE 
MSTDNN 

As can be seen, MSTDNN type networks conform with 
the first two principles of paragraph 2 and are also very pow- 
erful classifiers [14, 151. The architecture of these highly 
structured networks can be optimized in many ways. For 
best performance, the size of the input windows, the number 

A. Built-in Invuriunces: 

If there is any knowledge about the task, it should be 
built into fie structure of the network. F~~ speech and hand- 
written character recognition, a classifier that is robust 
against temporal distortions is highly desirable. This can be 
achieved by using shifted input windows over time as in the 
Time-Delay Neural Network (TDNN) [I ,  21. Shifting the 
window reduces the ~ ~ m b e r  of weights and ensures that the 
hidden abstractions that are learned are invariant under trans- 
lations in time. 

B. Tusk Decomposition: 
decision surfaces for 

the classification of events, it may be better to decompose 
the classification into the recognition of subevents that have 
to be observed jointly. In many cases the decision surfaces 
for the recognition of these subevents are much easier to 

of hidden units and the (word specific) state sequence topol- 
ogies are of critical importance for optimal performance. 
This makes MSTDNNs a suitable candidate for the demon- 
stration of the AS0 ako*thm. 

The AS0 algorithm optimizes all relevant parameters of 
MSTDNN structures for a given amount of training data. 
The minimal configuration of a MSTDNN consists of an 
input layer, a state layer and an output layer (see Fig. 1). Let 
us consider a word recognition task where each output unit 
represents a word. Each state unit represents a small piece of 
the utterance like phonemes or sub-phonemes. The network 
is initialized with a window size of one (one connection 
between an input unit and a unit of the following layer) and 
one state unit per output unit. The net input of the output 
units is computed by integrating the weighted activity of the 
single or multiple state unit(s) over time. The activation of 
the output units is given by the sigmoid of the net input. The 

Instead Of learning very 

learn. This method is used in many speech recognition 'YS- 
terns. For example* the recognition Of 

state units can be regarded as a special type of hidden units 
because of their very constrained connectivity to the output can be 

posed into the recognition of sequences of phonemes or 
phoneme like units. TDN"s have recently been extended to 

units. 
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Fig. 1 : An example of a simple MSTDNN with an input layer, a state layer 
and an output layer (consisting of two ouput units). In this example the first 
output unit is connected with three state units and the second output unit is 
connected with two state units. 

During training, the size of the input window of the state 
units as well as the number of state units increases depending 
on the performance of the corresponding output units. The 
criterium for the allocation of further resources is derived 
from the confusion matrix on the training set. At each epoch 
the mistakes of each output unit are counted. If the counter 
for output unit j is higher than the mean of all counters, then 
resources for this particular unit are added. At first, the size 
of the input window from the input layer to the correspond- 
ing state unit is increased by adding one set of random con- 
nections (see Fig. 2). In the next epoch, these new 
connections are trained together with the already existing 
connections and the above procedure is applied again. 

If the size of the input window of a state unit converges 
and the corresponding output unit still makes more mistakes 
than the average unit, then a new state unit is added (see Fig. 
3). The size of the input window of the ‘old’ state unit is 
halved to avoid a dramatic increase of the number of train- 
able parameters. The ‘new’ state unit receives in ut from an 
input window of the same size as the ‘old’ sute unit, but 
with random connections. From now on, the output unit 
receives input from both state units. 

The allocation of resources is controlled by a simple 
scheme: 

P 

Adding more resources is easy if the number of connec- 
tions is small compared to the number of training patterns 
and gets harder with an increasing number of connec- 
tions. This avoids hard upper bounds for the network 
resources. 
All resources that are added to the network are initialized 
randomly. This reduces the risk that the new resources 
disturb the learning process. A side-effect is that noise is 
added which prevents the network from getting stuck in 
local minima. This noise is reduced afterwards because 
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Fig. 2: The weights €”the input units to the state units for the recognition 
of the capital letters A .. E Negative weights are displayed by white blobs, 
positive weights by black blobs. Eight input units an used to represent the 
features recorded from the touch sensitive tablet (see [3]). 
Left: The weights after initialization. All windows have a size of one. 
Middle left: The weights after the first epoch. The input window for the 
characters “A”, “D’ and “ E  were increased to a size of two. The input win- 
dows for the characters “B’, “C” and “F’ were not increased. 
Middle right: The input window for the characters “A”. “D” and “E were 
increased again. The windows for the characters “B” and “C” were 
increased to a size of two. 
Right: The weights after the fifth epoch. 

the new connections are trained together with the already 
existing connections. 
The maximal size of the input windows also depends on 
the number of states that model a word. If a word is mod- 
eled by many states the state units don’t need such a large 
input window as a state unit that models a whole word. 

In case of more than one state unit per output unit the 
inputs of the output units can be computed in three different 
ways: The simplest way is to give each state unit an equal 
share of the time slice that the output unit represents. The 
second possibility is to use Dynamic Time Warping (DTW) 
to find the best path through the activation matrix of the state 
units [16]. The third possibility is to smooth the DTW path 
by Gaussian functions positioned according to the DTW seg- 
mentation (see Fig. 4). Smoothing of the DTW path allows 
the states to model the transitions between two states more 
accurately. If each state specializes on different parts of the 
spectrogram, then the transition between these parts may not 
be modeled by any of them. Smoothing allows both states to 
partially represent the transition. 
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Fig. 3: The splitting of a state in the same training run as in Fig. 2. The mod- 
eling of the character “D’ with one state and a big window is still insuffi- 
cient (left side). A new state is added and the size of the old window is 
halfed (right side). The weights for the old (first) state remain the. same and 
the weights for the new (second) state are initialized randomly. 

V. SIMULATIONS 

The AS0 algorithm was tested with a speech recognition 
task and two handwritten character recognition tasks.The 
chosen tasks are small enough to allow a reasonable number 
of experiments with the algorithm and are large enough to be 
relevant for an application oriented algorithm. The tasks are: 

Recognition of the English alphabet (aprox. 3000 words 
spoken by a single male speaker (DBS) taken from the 
same database that was used in [14]). The letters of the 
english alphabet were recorded in a sound-proof booth 
with a sampling rate of 12kHz. The speech was Ham- 
ming windowed and a 256-point FFT computed every 5 
ms. 16 normalized melscale coefficients were computed 
as described in [l]. 

Recognition of the digits 0, 1, 2, ..., 9 written on a touch 
sensitive tablet (aprox. lo00 digits written by aprox. 70 
writers, recorded as described in [312) 

1. Melscale coefficients were computed from the power spectrogram by 
computing log energies in each melscale energy band, where adjacent coef- 
ficients in frequency overlap by one spectral sample and are smoothed by 
reducing the shared sample by 50%. Adjacent coefficients in time were col- 
lapsed for further data reduction resulting in an overall 10 ms frame rate. All 
coefficients were then normailzed. 

2. During writing, the position and the pressure of the pen are recorded 
from the tablett. Resampling is used to reduce the temporal variations of the 
digits. From these data points, the directions and the curvatures of the pen 
strokes are computed and are added to the data. 

- 
time 

units 
- 

time 

7 time 
Fig. 4: Three choices for the connectivity between the state units and the 
output units. A: Each state gets an equal share of the time slice. B: Using 
DTW to find the best path through the activation matrix. C: Smoothing the 
DTW path by gaussian functions positioned according to the DTW segmen- 
tation. 

Recognition of the capital letters A, B, ..., Z written on a 
touch sensitive tablet (aprox. 2500 capital letters written 
by aprox. 50 writers, recorded as described in [3]) 

The databases were cut into training data, validation data 
and testing data. The validation data is used to determine the 
stopping criterium for the training phase. For the current 
simulations the hidden layer of the original MSTDNN was 
left out. Methods that add hidden units between the input 
units and the state units are currently tested. The results for 
both manually optimized architectures and automatically 
optimized architectures are summarized below (see Tables 1- 
3). Results with different manually optimized architectures 
(single state TDNNs with hidden layer) are added for the 
handwritten character recognition task for comparison. 

Fig.5 shows the connections from the input layer to the 
state layer after constructing the network with the AS0 algo- 
rithm for the alphabet recognition task. 13 characters are 
modeled by three states, 8 characters are modeled by two 
states and 5 characters are modeled by one state only. Fig.5 
also shows that the AS0 algorithm constructs a rather inho- 
mogenous architecture that would be hard to find manually. 
It should also be noted that the AS0 algorithm constructs 
different architectures for the same data depending on the 
initialization of the network [17]. Fig.5 also shows that the 
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Fig. 5: The weights from the input units to the state units for the recognition of the capital letters after constructing the architecture (see Fig. fig. 2 for further 
explanations). The character “A’ is modeled by two state units. Each of these st.& units gets input from input windows with size 13. The character “B” is 
modeled by one state etc.. 13 characters are modeled by three states, 8 characters are modeled by two states and 5 characters are modeled by one state only. It 
can be Seen that the new states generally have smaller weights (displayed by smaller blobs) than the older states. 

new states generally have smaller weights than the older 
states. This can be explained by the amount of training that 
the weights get. Weights that are installed early in the train- 
ing run are trained when the output error is still very high. 
Weights that are installed later when the output error is 
already lower do not get the same amount of training. This 
explains the good generalization abilities of some architec- 
tures with an unusual high number of trainable parameters 
that we sometimes observed. 

Table 3 shows that the MSTDNN network optimized by 
AS0 can adapt to different amounts of training data. The 
handtuned architecture performed equally well for the 
amount of data that it was optimized for, but did not general- 
ize as well for more data and failed to learn a small subset 
completely for various learning rates and momentums. 

VI. CONCLUSIONS 

The results on three different tasks show that the AS0 
algorithm can achieve equal or better results than handtuned 
architectures without any tuning to the particular task. The 
results suggest that the AS0 algorithm is able to optimize 
MSTDNN type networks for real world applications with 
varying amounts of training data effectively. Preliminary 
experiments with weight decay, weight elimination and OBD 
together with the AS0 algorithm have been encouraging. In 
future, the algorithm will be applied to continous speech rec- 
ognition and continous (cursive) handwritten character rec- 
ognition tasks. 

The design principles of the AS0 algorithm (as described 
in paragraph 111) should also allow the design of automatic 
structuring algorithms for other tasks. 
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TABLE 1. 

Speech Recognition Performances (Alphabet Recognition) 

training testing 

manually optimized MSTDNN architecture 94.3% 85.0% 
with DTW 

manually optimized MSTDNN with gaussian 98.9% 88.0% 
smoothing of the DTW path 

automatically optimized MSTDNN architec- 97.1% 85.0% 
ture with standard DTW 

automatically optimized MSTDNN with 99.5% 91.7% 
gaussian smoothing of the DTW path 

TABLE 2. 
Handwritten Character Recognition Performances (Digit Recognition) 

training testing 

manually optimized MSTDNN architecture 98.3% 96.5% 
without hidden units 

automatic optimization of the window size, 1 97.2% 97.0% 
state unit per output unit 

automatic optimization of the window size 99.6% 98.0% 
and the number of state units 

automatically optimized architecture with 100% 99.5% 
gaussian smoothing of the DTW path 

TDNN architecture proposed by [Guyon, 100% 95.5% 
19911 on the same data 

TDNN architecture manually optimized for 100% 98.5% 
the same data 

TABLE 3. 

Handwritten Character Recognition Performances on Test Data (Capital 
Letters) depending on training set size 

number of TDNN architecture man- 

patterns training patterns 
training ,,ally optimized for 1170 Optimized 

MSTDNN architecture 

520 no convergence 81.5% 

1170 88.5% 88.5% 

1560 90.5% 91.3% 
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