
Application Oriented Automatic Structuring of Time-Delay Neural Networks for
High Performance Character and Speech Recognition

Ulrich Bodenhausen and Alex Waibel

Computer Science Department, University of Karlsruhe, Postfach 6980,7500 Karlsruhe 1, FRG,

and

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract-Highly structured artificial neural networks have
been shown to be superior to fully c o ~ e ~ t e d networks for real-
world applications like speech recognition and handwritten
character recognition. These structured networks can be opti-
mized in many ways, and have to be optimized for optimal per-
formance. This makes the manual optimization very time-
consuming. A highly structured approach is the Multi State
Time Delay Neural Network (MSTDNN) which uses shifted
input windows and allows the recognition of sequences of
ordered events that have to be observed jointly. In this paper
we propose an Automatic Structure Optimization (ASO) algo-
rithm and apply it to MSTDNN type networks. The AS0 algo-
rithm optimizes all relevant parameters of MSTDNNs
automatically and was successfully tested with three different
tasks and varying amounts of training data.

I. INTRODUCTION

Highly structured artificial neural networks have been
shown to be superior to fully connected networks for real-
world applications like speech recognition [l , 21 and hand-
written character recognition [3]. The importance of the net-
work structure has also recently been examined by Geman et
al. [4]. They come to the conclusion that “dedicated
machines are harder to build but easier to train” and suggest
that important properties of the task have to be built into the
architecture of the network. Similar conclusions have been
made by Minsky and Papert [5]. But manual design of inter-
mediate representations and the network structure can be
very time-consuming for real-world applications. It may not
even be possible to optimize the structure before the exact
application of the user is known. For example, the user might
try to train a speech recognizer on a language and/or an
amount of training data that the structure was not optimized
for I.

1. See Table 3 for an example: A network that was well optimized for a
training set of 1170 patterns also genedized reasonably for a training set of
1560 patterns, but failed to learn a reduced training set of 520 pattems with
various learning rates and momentums.

0-7803-0999-5/93/$03.oO Q1993 IEEE

One reason for the introduction of structure to the net-
work is the relationship between the number of trainable
parameters, amount of training data and generalization (see
[6, 7, 81 and others). Networks with too many trainable
parameters for the given amount of training data learn well,
but do not generalize well. This phenomenon is usually
called overfitting. With too few trainable parameters, the net-
work fails to learn the training data and performs very poorly
on the testing data. Imposing structure into the network can
increase the generalization performance by reducing the
number of trainable parameters [1,2].

Unfortunately, highly structured networks can be opti-
mized in many more ways than fully connected networks. In
order to achieve optimal performance without time-consum-
ing manual optimization, we propose an AUTOMATIC
STRUCTURE OPTIMIZATION (ASO) algorithm that auto-
matically optimizes the structure and the total number of
parameters synergetically and also considers the current
amount of training data. Rather than starting with a distrib-
uted internal representation, the structure of the network is
constructed by adding units and connections in order to
selectively improve certain parts of the network. At the
beginning of the training run the internal representation is
completely local and gets more and more distributed in the
following optimization process. Only a concept for structur-
ing the network has to be specified before training. The con-
cept for structuring the network is derived from (simple)
knowledge about the task, such as invariances. The algo-
rithm combines a constructive and a pruning method. The
constructive approach is used to find a network structure that
is specifically tailored for the task and the current amount of
training data. Weight decay andor Optimal Brain Damage
(see next paragraph) can be used to further refine this archi-
tecture to achieve optimal performance.

11. PREVIOUS WORK

Two types of approaches have been proposed for the
automatic optimization of network architectures: Construc-
tive algorithms that start with a minimal architecture and
increase the resources of the network; and algorithms that

1 627

, , , _I..I .

avoid overfitting by limiting the computational power of
fixed architectures.

Multi State Time-Delay Neural Networks (MSTDNNs) [14,
151 that allow the recognition of sequences of ordered events

Regularization techniques like weight-decay or weight
elimination [9, 10, 111 belong to the second group. They add
some complexity measure to the cost function that is opti-
mized by the learning rule. This can reduce the risk of over-
fitting the data with too many trainable parameters in the
network, but the decay or elimination parameter has to be
well adjusted for optimal results. Optimal Brain Damage
(OBD) [12] is an algorithm that selectively removes unim-
portant weights from a network. The basic idea is to use sec-
ond-derivative information to make a trade-off between
network complexity and training set error. Although these
algorithms can improve existing (reasonable architecures)
considerably, it is not clear whether a foolish network can be
optimized to state-of-the art performance.

Constructive algorithms like Cascade Correlation [131
start with a small network and increase the resources during
the training phase. For example, Cascade Correlation starts
with no hidden units and tries to solve the classification
problem without them. If this fails, hidden units are added
one after the other.

111. CONCEPT OF THE AUTOMATIC STRUCTURE
OPTIMIZATION ALGORITHM

The proposed algorithm is based on four principles:

built-in invariances
task decomposition

0 confusion matrix dependant construction of the network
0 early constructive changes of the network architecture

that have to be observed jointly. -Unfortunately, this also
means another architectural parameter has to be optimized.

C. Confusion Matrix Dependant Construction of the Net-
work Architecture:

It was frequently observed that application-oriented
researchers using neural networks use the confusion matrix
of the training data for manual optimization of the network
architectures. A certain architecture is trainied until the stop-
ping criterium is reached and then the confusion matrix is
evaluated. If a structured approach is used (as in many
speech recognition systems), the modelling can be refined if
too many errors in a certain class are observed. This kind of
approach could be very useful for an automatic optimization
procedure.

D. Early Constructive Changes of the Network Architecture:

Waiting for a whole training run and then making deci-
sions on the further optimization of the network is computa-
tionally very expensive. Our experience shows that it is
possible to detect the most important mistakes very early in
the training run and change the architecture early in the train-
ing run. Starting the training run again is not necessary.

IV. APPLICATION OF THE AS0 ALGORITHM TO THE
MSTDNN

As can be seen, MSTDNN type networks conform with
the first two principles of paragraph 2 and are also very pow-
erful classifiers [14, 151. The architecture of these highly
structured networks can be optimized in many ways. For
best performance, the size of the input windows, the number

A. Built-in Invuriunces:

If there is any knowledge about the task, it should be
built into fie structure of the network. F~~ speech and hand-
written character recognition, a classifier that is robust
against temporal distortions is highly desirable. This can be
achieved by using shifted input windows over time as in the
Time-Delay Neural Network (TDNN) [I , 21. Shifting the
window reduces the ~ ~ m b e r of weights and ensures that the
hidden abstractions that are learned are invariant under trans-
lations in time.

B. Tusk Decomposition:
decision surfaces for

the classification of events, it may be better to decompose
the classification into the recognition of subevents that have
to be observed jointly. In many cases the decision surfaces
for the recognition of these subevents are much easier to

of hidden units and the (word specific) state sequence topol-
ogies are of critical importance for optimal performance.
This makes MSTDNNs a suitable candidate for the demon-
stration of the AS0 ako*thm.

The AS0 algorithm optimizes all relevant parameters of
MSTDNN structures for a given amount of training data.
The minimal configuration of a MSTDNN consists of an
input layer, a state layer and an output layer (see Fig. 1). Let
us consider a word recognition task where each output unit
represents a word. Each state unit represents a small piece of
the utterance like phonemes or sub-phonemes. The network
is initialized with a window size of one (one connection
between an input unit and a unit of the following layer) and
one state unit per output unit. The net input of the output
units is computed by integrating the weighted activity of the
single or multiple state unit(s) over time. The activation of
the output units is given by the sigmoid of the net input. The

Instead Of learning very

learn. This method is used in many speech recognition 'YS-
terns. For example* the recognition Of

state units can be regarded as a special type of hidden units
because of their very constrained connectivity to the output can be

posed into the recognition of sequences of phonemes or
phoneme like units. TDN"s have recently been extended to

units.

1628

n O U ~ V U ~ units n

ts

Input over time
(spectrogram etc.)

input windo

Fig. 1 : An example of a simple MSTDNN with an input layer, a state layer
and an output layer (consisting of two ouput units). In this example the first
output unit is connected with three state units and the second output unit is
connected with two state units.

During training, the size of the input window of the state
units as well as the number of state units increases depending
on the performance of the corresponding output units. The
criterium for the allocation of further resources is derived
from the confusion matrix on the training set. At each epoch
the mistakes of each output unit are counted. If the counter
for output unit j is higher than the mean of all counters, then
resources for this particular unit are added. At first, the size
of the input window from the input layer to the correspond-
ing state unit is increased by adding one set of random con-
nections (see Fig. 2). In the next epoch, these new
connections are trained together with the already existing
connections and the above procedure is applied again.

If the size of the input window of a state unit converges
and the corresponding output unit still makes more mistakes
than the average unit, then a new state unit is added (see Fig.
3). The size of the input window of the ‘old’ state unit is
halved to avoid a dramatic increase of the number of train-
able parameters. The ‘new’ state unit receives in ut from an
input window of the same size as the ‘old’ sute unit, but
with random connections. From now on, the output unit
receives input from both state units.

The allocation of resources is controlled by a simple
scheme:

P

Adding more resources is easy if the number of connec-
tions is small compared to the number of training patterns
and gets harder with an increasing number of connec-
tions. This avoids hard upper bounds for the network
resources.
All resources that are added to the network are initialized
randomly. This reduces the risk that the new resources
disturb the learning process. A side-effect is that noise is
added which prevents the network from getting stuck in
local minima. This noise is reduced afterwards because

F I F F F

C C I C C

B I E B B

A B A A A

E E E E

D D D D

Fig. 2: The weights €”the input units to the state units for the recognition
of the capital letters A .. E Negative weights are displayed by white blobs,
positive weights by black blobs. Eight input units an used to represent the
features recorded from the touch sensitive tablet (see [3]).
Left: The weights after initialization. All windows have a size of one.
Middle left: The weights after the first epoch. The input window for the
characters “A”, “D’ and “ E were increased to a size of two. The input win-
dows for the characters “B’, “C” and “F’ were not increased.
Middle right: The input window for the characters “A”. “D” and “E were
increased again. The windows for the characters “B” and “C” were
increased to a size of two.
Right: The weights after the fifth epoch.

the new connections are trained together with the already
existing connections.
The maximal size of the input windows also depends on
the number of states that model a word. If a word is mod-
eled by many states the state units don’t need such a large
input window as a state unit that models a whole word.

In case of more than one state unit per output unit the
inputs of the output units can be computed in three different
ways: The simplest way is to give each state unit an equal
share of the time slice that the output unit represents. The
second possibility is to use Dynamic Time Warping (DTW)
to find the best path through the activation matrix of the state
units [16]. The third possibility is to smooth the DTW path
by Gaussian functions positioned according to the DTW seg-
mentation (see Fig. 4). Smoothing of the DTW path allows
the states to model the transitions between two states more
accurately. If each state specializes on different parts of the
spectrogram, then the transition between these parts may not
be modeled by any of them. Smoothing allows both states to
partially represent the transition.

1629

. , ,,,, , I””ll*t“.l ,“ ,,.,, ..I__ ._, “,.. . ..

C I
B

A A

Fig. 3: The splitting of a state in the same training run as in Fig. 2. The mod-
eling of the character “D’ with one state and a big window is still insuffi-
cient (left side). A new state is added and the size of the old window is
halfed (right side). The weights for the old (first) state remain the. same and
the weights for the new (second) state are initialized randomly.

V. SIMULATIONS

The AS0 algorithm was tested with a speech recognition
task and two handwritten character recognition tasks.The
chosen tasks are small enough to allow a reasonable number
of experiments with the algorithm and are large enough to be
relevant for an application oriented algorithm. The tasks are:

Recognition of the English alphabet (aprox. 3000 words
spoken by a single male speaker (DBS) taken from the
same database that was used in [14]). The letters of the
english alphabet were recorded in a sound-proof booth
with a sampling rate of 12kHz. The speech was Ham-
ming windowed and a 256-point FFT computed every 5
ms. 16 normalized melscale coefficients were computed
as described in [l].

Recognition of the digits 0, 1, 2, ..., 9 written on a touch
sensitive tablet (aprox. lo00 digits written by aprox. 70
writers, recorded as described in [312)

1. Melscale coefficients were computed from the power spectrogram by
computing log energies in each melscale energy band, where adjacent coef-
ficients in frequency overlap by one spectral sample and are smoothed by
reducing the shared sample by 50%. Adjacent coefficients in time were col-
lapsed for further data reduction resulting in an overall 10 ms frame rate. All
coefficients were then normailzed.

2. During writing, the position and the pressure of the pen are recorded
from the tablett. Resampling is used to reduce the temporal variations of the
digits. From these data points, the directions and the curvatures of the pen
strokes are computed and are added to the data.

-
time

units
-

time

7 time
Fig. 4: Three choices for the connectivity between the state units and the
output units. A: Each state gets an equal share of the time slice. B: Using
DTW to find the best path through the activation matrix. C: Smoothing the
DTW path by gaussian functions positioned according to the DTW segmen-
tation.

Recognition of the capital letters A, B, ..., Z written on a
touch sensitive tablet (aprox. 2500 capital letters written
by aprox. 50 writers, recorded as described in [3])

The databases were cut into training data, validation data
and testing data. The validation data is used to determine the
stopping criterium for the training phase. For the current
simulations the hidden layer of the original MSTDNN was
left out. Methods that add hidden units between the input
units and the state units are currently tested. The results for
both manually optimized architectures and automatically
optimized architectures are summarized below (see Tables 1-
3). Results with different manually optimized architectures
(single state TDNNs with hidden layer) are added for the
handwritten character recognition task for comparison.

Fig.5 shows the connections from the input layer to the
state layer after constructing the network with the AS0 algo-
rithm for the alphabet recognition task. 13 characters are
modeled by three states, 8 characters are modeled by two
states and 5 characters are modeled by one state only. Fig.5
also shows that the AS0 algorithm constructs a rather inho-
mogenous architecture that would be hard to find manually.
It should also be noted that the AS0 algorithm constructs
different architectures for the same data depending on the
initialization of the network [17]. Fig.5 also shows that the

1630

H 2

L Y

K x

J U

I V

H U

C 1

F S

Fig. 5: The weights from the input units to the state units for the recognition of the capital letters after constructing the architecture (see Fig. fig. 2 for further
explanations). The character “A’ is modeled by two state units. Each of these st.& units gets input from input windows with size 13. The character “B” is
modeled by one state etc.. 13 characters are modeled by three states, 8 characters are modeled by two states and 5 characters are modeled by one state only. It
can be Seen that the new states generally have smaller weights (displayed by smaller blobs) than the older states.

new states generally have smaller weights than the older
states. This can be explained by the amount of training that
the weights get. Weights that are installed early in the train-
ing run are trained when the output error is still very high.
Weights that are installed later when the output error is
already lower do not get the same amount of training. This
explains the good generalization abilities of some architec-
tures with an unusual high number of trainable parameters
that we sometimes observed.

Table 3 shows that the MSTDNN network optimized by
AS0 can adapt to different amounts of training data. The
handtuned architecture performed equally well for the
amount of data that it was optimized for, but did not general-
ize as well for more data and failed to learn a small subset
completely for various learning rates and momentums.

VI. CONCLUSIONS

The results on three different tasks show that the AS0
algorithm can achieve equal or better results than handtuned
architectures without any tuning to the particular task. The
results suggest that the AS0 algorithm is able to optimize
MSTDNN type networks for real world applications with
varying amounts of training data effectively. Preliminary
experiments with weight decay, weight elimination and OBD
together with the AS0 algorithm have been encouraging. In
future, the algorithm will be applied to continous speech rec-
ognition and continous (cursive) handwritten character rec-
ognition tasks.

The design principles of the AS0 algorithm (as described
in paragraph 111) should also allow the design of automatic
structuring algorithms for other tasks.

1631

ACKNOWLEDGEMENT
TABLE 1.

Speech Recognition Performances (Alphabet Recognition)

training testing

manually optimized MSTDNN architecture 94.3% 85.0%
with DTW

manually optimized MSTDNN with gaussian 98.9% 88.0%
smoothing of the DTW path

automatically optimized MSTDNN architec- 97.1% 85.0%
ture with standard DTW

automatically optimized MSTDNN with 99.5% 91.7%
gaussian smoothing of the DTW path

TABLE 2.
Handwritten Character Recognition Performances (Digit Recognition)

training testing

manually optimized MSTDNN architecture 98.3% 96.5%
without hidden units

automatic optimization of the window size, 1 97.2% 97.0%
state unit per output unit

automatic optimization of the window size 99.6% 98.0%
and the number of state units

automatically optimized architecture with 100% 99.5%
gaussian smoothing of the DTW path

TDNN architecture proposed by [Guyon, 100% 95.5%
19911 on the same data

TDNN architecture manually optimized for 100% 98.5%
the same data

TABLE 3.

Handwritten Character Recognition Performances on Test Data (Capital
Letters) depending on training set size

number of TDNN architecture man-

patterns training patterns
training ,,ally optimized for 1170 Optimized

MSTDNN architecture

520 no convergence 81.5%

1170 88.5% 88.5%

1560 90.5% 91.3%

The authors gratefully acknowledge the support of the
McDonnel-Pew Foundation (Cognitive Neuroscience Pro-
gram) and would like to thank Patrick Haffner and Joe
Tebelskis for lots of helpful discussions. Thanks to Stefan
Manke for providing results from manually tuned networks.

REFERENCES

[l] Waibel, A., Hanazawa, T., Hinton, G., Shiano, K., and Lang, K. Pho-
neme Recognition using Time-Delay Neural Networks. IEEE Transac-
tions on Acoustics, Speech and Signal Processing, March 1989

[2] Lang, K. PhD Thesis, Camegie Mellon University, PA, 15213
[3] Guyon, I., Albrecht, P., Le Cun, Y., Denker, W., Hubbard, W. Design of a

Neural Network Character Recognizer for a Touch Terminal, Pattern
Recognition, 24(2), 1991

[4] Geman, S., Bienenstock, E., and Doursat, R., “Neural Networks and the
BiasNariance Dilemma,” Neural Computation, vol. 4, pp. I - 58. 1992

[5] Minsky, M.L., Papert, S.A. Perceptron-Expamded Edition MIT Press,,
1988

[6] Baum, E.B., and Haussler, D., “What Size Net Gives Valid Generaliza-
tion”, Neural Computation, 1: 151-160, 1989

[7] Solla, S. , Schwartz, D.B., Tishby, N., and Levin, E., “Supervised Learn-
ing: a Theoretical Framework”. in: Advances in Neural Informtion
Processing Systems 2, 1989

[8] Moody, J. ,“The Effective Number of Parameters: An Analysis of Gen-
eralization and Regularization in Nonlinear Learning Systems”. in:
Advances in Neural Information Processing Systems 4, 199 1 .

[9] Rumelhart, D.E. Leaming and Generalization Plenary Address, IEEE
Intemationd Conference on Neural Networks,San Diego, 1988

[IO] Weigend, AS., Hubermann, B.A., and Rumelhart, D.E., Predicting the
Future: A Connectionist Approach, TR SSL-90, Xerox Science M o r a -
tory, Palo Alto, CA, 1990

[l l] Chauvin, Y. A Back-Propagation Algorithm with Optimal Use of Hid-
den Units In; Touretzky. D. editor, Neural Information Processing Sys-
tems 1, Denver, 1988, Morgan Kaufmann, 1989

[I21 Le Cun, Y., Denker, J.S., Solla, S.A. Optimal Brain Damage In;
Touretzky, D. editor, Neural Information Processing Systems 2. Den-
ver, 1989. Morgan Kaufmann, 1990

[I31 Fahlmann, S.E. The Cascade-Correlation Leaming Architecture In;
Touretzky, D. editor, Neural Information Processing Systems 2, Den-
ver, 1989, Morgan Kaufmann, 1990

[I41 Haffner, P.. Franzini, M., and Waibel, A. Integrating Time Alignment
and Neural Networks for High Performance Continuous Speech Recog-
nition, ICASSP 91

[I51 Haffner, P., and Waibel, A. Time-Delay Neural Networks Embedding
Time Alignment: A Performance Analysis, Eumspeech 91

[16] Sakoe,H., and Chiba, S., Dynamic Programming Algorithm Optimiza-
tion for Spoken Word Recognition, IEEE Transactions on Acoustics,
Speech and Signal Processing. (26): 43-49, 1978

[17] Bodenhausen, U., and Manke, S., Connectionist Architectural Leaming
for High Performance Character and Speech Recognition, ICASSP Pro-
ceedings. Minneapolis, April 1993

1632

