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ABSTRACT

We present a Multi-State Time Delay Neural Network

(MS-TDNN) for speaker-independent, connected letter

recognition. Our MS-TDNN achieves 98.5/92.0% word

accuracy on speaker dependent/independent English let-

ter tasks[7, 8]. In this paper we will summarize several

techniques to improve (a) continuous recognition perfor-

mance, such as sentence level training, and (b) phonetic

modeling, such as network architectures with \internal

speaker models", allowing for \tuning-in" to new speak-

ers. We also present results on our large and still growing

new German Letter data base, containing over 40.000 let-

ters continuously spelled by 55 speakers.
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1. INTRODUCTION

The recognition of spelled strings of letters is essential

for all application involving special vocabularies, such as

names or addresses. Despite its small vocabulary, the

task is quite di�cult because the English or German let-

ters are easily confused. Even humans often need further

inquiry to distinguish between the similar sounds of (for

example) the letters M and N, or D and T. Throughout

this text, we will use the terms \letter" and \word" in-

terchangeable. The term \sentence" refers to a string of

letters.

The Baseline MS-TDNN [5, 8] integrates the time-

shift invariant architecture of a TDNN [12] and a nonlin-

ear time alignment procedure (DTW) into a word-level

classi�er. Figure 1 shows the MS-TDNN in the process

of recognizing the excerpted word B, represented by 16

melscale FFT coe�cients at a 10 msec frame rate. The

�rst three layers constitute a standard TDNN, which uses

sliding windows with time delayed connections to com-

pute a score for each phoneme for every frame, these are

the activations in the \Phoneme Layer". Each word to

be recognized is modeled by a sequence of phonemes. In

the \DTW (Dynamic Time Warping) Layer", an opti-

mal alignment path, i.e. the path with the highest ac-

cumulative phoneme scores is found for each word, the
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Figure 1: The MS-TDNN recognizing the excerpted word

B. Only the activations for the words SIL, A, B, and C

are shown.

activations along these paths are then collected in the

word output units. 15 (25, 50) rows of hidden units were

used for speaker-dependent (-independent) experiments,

corresponding to ca. 6000 (10000, 20000) trainable pa-

rameters, i.e. network weights.

Training starts with \bootstrapping", during which

only the front-end TDNN is trained as a frame-by-frame

phoneme classi�er, with phoneme boundaries �xed as given

in the training data. In a second phase, training is ex-

tended to the word level, where phoneme boundaries with-

in the given word boundaries are freely aligned in the



DTW Layer. Instead of phonemes, the output are now

words, and error derivatives are backpropagated from the

word units through the alignment paths and the front-end

TDNN.

The choice of sensible objective functions is of great

importance. For training on the phoneme level, there is
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for large n (n > 50 in our case); consider for example

that for a target (1; 0; : : : ; 0), the output (0:0; : : : ; 0:0)

has only half the error than the more desirable output
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which (like cross entropy) punishes \outliers" with an er-

ror approaching in�nity for jt

i

� y

i

j approaching 1.0.

For the word level training, we have achieved best re-

sults with an objective function similar to the \Classi�ca-

tion Figure of Merit" (CFM) [4], which tries to maximize

the distance d = y

c

�y

hi

between the correct score y

c

and

the highest incorrect score y

hi

instead of using absolute

targets 1.0 and 0.0 for correct and incorrect word units:
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The philosophy here is not to \touch" any output unit

not directly related to correct classi�cation. We found it

even useful to backpropagate error only in the case of a

wrong or too narrow classi�cation, i.e. if

y

c

� y

hi

< �

safety margin

2. IMPROVING CONTINUOUS

RECOGNITION

Training Across Word Boundaries. A proper treat-

ment of word boundaries is especially important for a

short word vocabulary, since most phones are at word

boundaries. While the phoneme boundaries within a word

are freely aligned by the DTW during \word level train-

ing", the word boundaries are �xed and might be error

prone or suboptimal. By extending the alignment one

phoneme to the left (last phoneme of previous word) and

the right (�rst phoneme of next word), the word bound-

aries can be optimally adjusted in the same way as the

phoneme boundaries within a word. Figure 2(a) shows

an example in which the word to recognize is surrounded

by a silence and a B, thus the left and right context (for

all words to be recognized) are the phonemes sil and b,

respectively. The gray shaded area indicates the exten-

sion necessary to the DTW alignment. It is shown how a

new boundary for the beginning of the word A is found.
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Figure 2: Various techniques to improve sentence level

recognition performance.

Word Duration Dependent Penalizing of Inser-

tion and Deletion Errors. In continuous recognition

mode, instead of looking at word units the well-known

\One Stage DTW" algorithm [11] is used to �nd an opti-

mal path through an unspeci�ed sequence of words. The

short and easily confused English letters cause many word

insertion and deletion errors, such as \T E" vs. \T"

or \O" vs. \O O" , therefore proper duration model-

ing is essential. As suggested in [6], minimum phoneme

duration can be enforced by \state duplication". In ad-

dition, we are modeling a duration (d) and word (w)



dependent penalty Pen

w

(d) = log(k + prob

w

(d)), where

the pdf prob

w

(d) is approximated from the training data

and k is a small constant to avoid zero probabilities.

Pen

w

(d) is added to the accumulated score AS of the

search path, AS = AS + �

w

�Pen

w

(d), whenever a word

boundary is crossed, as indicated in �gure 2(b). The ra-

tio �

w

, which determines the degree of inuence of the

duration penalty, is another important degree of free-

dom. There is no straightforward mathematically exact

way to compute the e�ect of a change of the \weight"

�

w

to the insertion and deletion rate. Our approach is

a (pseudo) gradient descent, which changes �

w

propor-

tional to E(w) = (#ins

w

�#del

w

)=#w, i.e. we are trying

to maximize the relative balance of insertion and deletion

errors.

Error Backpropagation at the Sentence Level.

Usually the MS-TDNN is trained to classify excerpted

words, but evaluated on continuously spoken sentences.

We propose a simple but e�ective method to extend train-

ing on the sentence level. Figure 2(c) shows the alignment

path of the sentence \C A B" , in which a typical er-

ror, the insertion of anA, occurred. In a forced alignment

mode (i.e. the correct sequence of words is enforced), pos-

itive training is applied along the correct path, while the

units along the incorrect path receive negative training.

Note that the e�ect of positive and negative training is

neutralized where the paths are identical, only di�ering

parts receive non-zero error backpropagation.

3. INTERNAL SPEAKER MODELS

The idea of \Internal Speaker Models" (ISMs) is

to have submodules in a network, each of which is spe-

cialized on one particular speaker, or a group of speakers,

found by clustering, or simply male/female speakers. The

number of specialized parameters can vary from simple

speaker-speci�c bias connections to speaker-speci�c sub-

nets, and �nally entire speaker-speci�c TDNNs. When

an unknown speaker is presented, somehow one or a (nor-

malized) mixture of appropriate submodule(s) has to be

selected. This is done by \ISM selection units" (ISM-

SUs, one for each ISM), which inuence the contribu-

tion of each ISM network . We explored two di�erent

mechanisms (�gure 3): (a) An additional \speaker iden-

ti�cation net" is trained to control the internal speaker

models, i. e. the activations of the ISM-SUs are computed

by this net each time before an utterance is recognized,

and (b) a \tuning-in" process, in which a small set of

speech samples from an unknown speaker is used to adapt

the selection of the speaker-speci�c parameters for this

speaker. \Tuning-in" is relatively straightforward for la-

beled samples, the \mixture parameters", i. e. the activa-

tions of the ISM-SUs, are found via gradient descent (er-

ror is backpropagated into the ISM-SUs, all other weights

are frozen), where the objective function is to maximize

the performance on the adaptation data. The so found
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Figure 3: Two methods to adjust the internal speaker

models, shown for the BIASED architecture: \Speaker

Identi�cation" (a), and \Tuning in" (b).

mixture of ISMs is then used for recognition on the en-

tire rest of the test data. \Tuning-in" can also be applied

in an unsupervised fashion [1], in which case \phantom

targets" (derived from the actual net output) are used.

These experiments and their results are described in more

details in [8].

4. EXPERIMENTAL RESULTS

4.1. ENGLISH LETTERS

Our MS-TDNN achieved excellent performance on both

speaker dependent and independent tasks. For speaker

dependent testing, we used the CMU \Alph-Data", with

1000 sentences (i. e. continuously spelled strings of letters

in our context) from each of 3 male and 3 female speak-

ers. Speaker-independent performance was measured

on the DARPA Resource Management Spell-mode data,

consisting of a total of 1680 spelled words from 120 speak-

ers. Table 1 indicates the usage of training and test sets.

Speaker Dependent (CMU Alph Data)

600/3000 train, 400/2000 test sentences/words

speaker SPHINX[5]

our

MS-TDNN

mjmt 96.0 98.5

mdbs 83.9 91.1

maem { 94.6

fcaw { 98.8

gt { 86.9

fee { 91.0

Speaker Independent (Res. Man. Spell-mode)

109/11000 train, 11/900 test speaker/words

SPHINX[9] our MS-TDNN

+ Senone gender speci�c

88.7 90.4 90.8 92.0

Table 1: Word accuracy (in % on the test set) on speaker

dependent/independent connected letter tasks.



4.2. GERMAN LETTERS

We are in the process of creating a large data base of Ger-

man spelled letters. At this time, more than 40.000 let-

ters from 55 speakers (table 2) were collected and labeled.

Volunteers are asked to spell a set of 50 to 150 sentences

in a natural manner, without arti�cial pauses between let-

ters. Each individual spells a di�erent set, consisting of

three categories: proper names, drawn randomly from a

large list of 100.000 names, some random city names and

some pseudo-random letter sequences. The latter subset

is designed to increase the percentage of the less frequent

words, such as Q or X, to make sure there is a reasonable

amount of training data for all letters. For example, after

adding the pseudo random sequences, the ratio of Q to

E increases from 3 : 1000 to 75 : 1000 .

To obtain word and phoneme boundaries, the data

were �rst labeled by running the JANUS LVQ recognizer

[13] in a forced alignment mode. After a initial training

with these labels, the MS-TDNN was used to relabel the

data. This procedure almost halved the error rate on

successive training runs.

male female all

Spr letter Spr letter Spr letter

train 33 24752 10 10071 43 34823

test 9 6341 3 1865 12 8206

all 42 31093 13 11936 55 43029

Table 2: The German Spell Data Base.

The Vocabulary. In addition to \Silence" and the

26 letters of the English alphabet, the German alpha-

bet provides the 3 modi�ed vowels (\Umlaute")

�

A,

�

O,

and

�

U, as well as �. Unfortunately, there are several

possible ways to spell �, besides the o�cial version \es-

zett", the pronunciations \scharf-S", \scharfes-S", or in

some dialects even \Dreierles-S" are also used. Since con-

tained by many proper names, the hyphen (-) was also

included into the vocabulary, with three di�erent possible

pronunciations (\Strich", \Bindestrich", and \Gedanken-

strich"). With the above additions, the German spelling

task sums up to a vocabulary size of 37 words.

Interestingly, the German letters have much less prob-

lems with insertion and deletion errors than the English

letters. When the English letters are tested on sentence

level, the initial combined insertion and deletion error

rate is greater 10%, and only after learning word en-

trance penalties and sentence level training (as described

in section 2), it is reduced to roughly 4%. German let-

ters have an initial combined insertion and deletion rate

of only ca. 3%, probably due to the more \staccato-like

German uttering", and to a more implicit modeling of

glottal stops. Table 3 summarizes �rst results on the

German letter data base. Further improvements are ex-

pected with more training speakers and by applying the

speaker modeling techniques described in section 3.

Speaker-Independent German Spell Task

43/34823 train, 12/8206 test speaker/words

Net Size excerpted words continuous

(hidden layer) train test train test

25 units 97.6 92.5 94.3 88.1

50 units 98.4 93.8 96.4 90.3

Table 3: Word accuracy in % on German Spelling.
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