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Abstract

In the context of human-computer interaction, informa-
tion about head pose is an important cue for building a
statement about humans’ focus of attention. In this paper,
we present an approach to estimate horizontal head rota-
tion of people inside a smart-room. This room is equipped
with multiple cameras that aim to provide at least one facial
view of the user at any location in the room. We use neural
networks that were trained on samples of rotated heads in
order to classify each camera view. Whenever there is more
than one estimate of head rotation, we combine the differ-
ent estimates into one joint hypothesis. We show experimen-
tally, that by using the proposed combination scheme, the
mean error for unknown users could be reduced by up to
50% when combining the estimates from multiple cameras.
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1. Introduction

This work is embedded in the framework of the Euro-
pean Union research project CHIL (Computers in the Hu-
man Interaction Loop) [13]. Rather than requiring user at-
tention to operate machines, CHIL services attempt to un-
derstand human activities and interactions to provide help-
ful services implicitly and unobtrusively. Realizing those
kind of services requests to register all expressing modal-
ities a human offers. One of the targeted scenarios is a so
called smart-room which can be used for meetings and lec-
tures. This room is equipped with a variety of sensors, such
as cameras and microphones, providing data that is used to
capture e.g. speech, gestures and head orientation in order
to gather information about the users’ current occupation,
intention or focus of attention.

In particular, people’s gaze gives a clue about their focus
of attention [8] [1] [3] [5] [12]. Depending on the encoun-
tered focus, it is possible to decide whether humans are in-

terruptible, how to present supportive information (acousti-
cally or visually) and what location and device is most ap-
propriate to display a certain type of information.

Ideally, the problem of tracking a person’s line of sight
would be addressed by measuring eye-gaze directly. How-
ever, in natural environments where people do not directly
interact with computerized devices, tracking eye-gaze with
distant cameras suffers from low resolution images and un-
restricted human motion. In order to overcome these prob-
lems, we concentrate on estimating head pose instead of
eye-gaze. We use multiple distant cameras that cover the en-
tire room, and then combine their measurements in order to
acquire a more robust and reliable head pose estimate. As
argued by Stiefelhagen et al. [10], head orientation is a vi-
able approximation for eye-gaze and can be used to imple-
ment many practical applications.

1.1. Related Work

In recent years, various approaches for visually estimat-
ing head pose were presented. Yet, the interacting person
whose pose shall be recognized often had to limit its move-
ment and rotation to a fixed area around the camera. This
prohibits natural behaviour and only allows to embed those
systems in environments where the user’s freedom to move
is restricted anyway (like in a car or in front of a screen).

Especially model-based approaches as Horprasert et al.
presented in [4] are affected by this constraint: By pro-
jecting facial features from their corresponding head model
built in 3D to the observed image plane in 2D, the work de-
scribes how to hypothesize the observed head pose. Even
though model-based hypotheses as such tend to provide
very robust detection rates of a head’s orientation, they re-
quire high-resolution captures for localizing the necessary
features spread over the entire face. In contrast, appearance-
based approaches tend to achieve satisfactory results even
with lower resolutions of extracted head images. Stiefelha-
gen et al. [9] demonstrated the implementation of neural
networks for detecting head orientations. Facial images



Figure 1. Views from the four cameras in our setup. The size of the head differs between the single
views, two cameras suffer from back light. The resolution of the head region is very low. Thus, using
multiple views of the head might help in reducing the error rate when estimating head pose.

were downscaled to a size of20×30 pixels before being ap-
plied for pose estimation. However, the output only covered
ranges from the left to the right profile and only one camera
view was used for the estimation. Tian et al. [11] described
the use of wide baseline overhead stereo-cameras to classify
an observed head pose into one of a fixed set of discrete pose
classes. Neural networks were implemented for estimating
the head pose seen by each camera. A maximum-likelihood
search results in the final pose hypothesis. Though the archi-
tecture of the presented system seems to be usable for more
than two cameras, the work lacks an example where more
than one camera pair is used. Aside from this, we know no
other work combining multiple views with low-resolution
images.

Aside from neural networks, many different classifiers
have been presented for appearance-based head pose es-
timation. One interesting work is described by Park et al.
in [6], though its output is limited to a small, fixed size of
pose classes. By reducing extracted images enclosing the
head to a3 × 4 pixel grid, the image can be interpreted as
a 12-dimensional vector that can be classified to its near-
est neighbours. Although being focused on detecting head
orientations ranging from0◦ to 360◦, the support for multi-
ple cameras is missing.

1.2. Sensor Setup

Figure 2 depicts our sensor setup: four calibrated colour
cameras are mounted in the upper corners of the smart-room
at a height of about 2.7 m. The size of the room is5 × 7m.
Because of this layout, the entire room is covered by the
cameras’ field of view, such that at least one facial view of
the user’s head can be obtained. However, the missing abil-
ity to zoom optically, results in very low-resolution images
of the extracted head1, depending on where the person is

1 Using the native camera resolution of640 × 480 pixels, the typical
size of a head is about20× 30 to 50× 65 pixels.

standing. Figure 1 shows the four views of the room as seen
by the cameras.

Due to non-uniform lighting from different sources (sun-
light, fluorescent tubes, halogene lamps), it is inevitable that
the single head views suffer from different, non-optimal
lighting conditions. Further, at least two cameras are con-
fronted with back light.

Figure 2. Four cameras are placed at the cor-
ners of the smart-room, such that at least one
facial view of the head can be obtained. We
estimate the horizontal rotation angle (pan) of
a person’s head by combining the estimates
from multiple cameras.

2. Estimating Head Pose with Neural Net-
works

For each camera view, we estimate the head’s orienta-
tion with a neural network that outputs the head’s rela-
tive pan angle to the corresponding camera’s line of sight.
Hereby, the topology follows [9], which suggests using a
three-layered feed-forward architecture.



Figure 3. We use a three-layered, feed-
forward neural network to estimate the pan
angle relative to each camera. Estimating the
relative angle allows for using the same net-
work for all camera views and makes it easy
to add cameras to the system without retrain-
ing the network. The network’s input pattern
consists of a normalized intensity image of
the head as well as a vertical and horizon-
tal edge image (Sobel). The single output unit
provides the relative pan angle with respect
to the camera, ranging from −90◦ to +90◦.

The net is being trained using standard error backprop-
agation with facial views of the head only, that range from
−90◦ to +90◦. As depicted in figure 3, we decided to use a
normalized intensity image of the head along with a verti-
cal and horizontal edge image (produced by the Sobel oper-
ator) as the network’s input pattern.

2.1. Extracting the Head

Head alignment is crucial in reducing noise whilst build-
ing input patterns for neural networks that estimate the head
pose depicted in the extracted images. Because of this, we
decided to keep head alignment and extraction independent
from an actual head tracking technique that is implemented
in a different module and outputs the head’s 3D centroid.

Always being aware of the centroid’s coordinates, we
implemented a colour model for segmenting pixels that ap-
proximate the requested head’s colour. Once a new head’s
centroid becomes available, a parametric colour model is
initialized, using the pixels neighbouring that given source
and is adapted with any following encountered head re-
gions. Using histogram backprojection then results in a sup-
port map, depicting pixels that were declared as belonging
to the head due to the colour model.

Furthermore, for stabilizing the extraction, an adaptive
foreground segmentation as Stauffer et al. presented in [7]

Figure 4. The head is aligned by using a
colour model and adaptive foreground seg-
mentation in order to build separate search
spaces where an elliptical shape tracker ap-
proximates the best fitting ellipse.

was used for building a secondary, binary image, showing
pixels classified as belonging to the foreground.

On top of that, an elliptical shape tracker similar to [2],
utilizes the intermediate results for finding a best fitting el-
lipse, enclosing as many supportive pixels as possible. Fig-
ure 4 depicts an example of our implemented head align-
ment, showing how an ellipse encloses a subset of pixels
both in the support map of the colour-based tracking and
in the binary result of the foreground segmentation. Let
s = (x, y, σ, τ) be the state of an ellipse with its 2D position
(x, y), horizontal radiusσ and vertical radiusτ . Further,
be φC(s) the score of an ellipse with states on a colour-
based support map as denoted previously,φF (s) the respec-
tive score on the binary result image of the described fore-
ground segmentation, then the best enclosing ellipse with
stateŝ can be described as

ŝ = argmaxs(φC(s) + φF (s)) (1)

Both φC(s) andφF (s) rate the ellipse by scoring all of the
pixelsp that are enclosed in the underlying image and were
defined as follows:

φC/F (s) =
∑

p

ζ(p), with ζ(p) =

{
c if f(p) = 0
f(p) else

(2)
f(p) describes the support of a given pixelp, as defined
by the respective support maps. The constantc is used as a
penalty value for enclosing pixels that were negatively clas-
sified. A value of−1 showed sufficient results.



3. Combining Estimates from Multiple Views

We defineΘ = {θi}, with θi ∈ {1◦, 2◦, . . . , 360◦} as
the set of all possible head pose classes. Further, at each
timestamp we haveH = {h1, h2, . . . , hn} a set of all single
estimations made, wheren resembles the number of cam-
eras used.

In making a final decision about the true head pose, we
score a pose hypothesis by summing up the a-posteriori
probabilities of all available estimations regarding a hypo-
thetical head pose as follows:

π(θi) =
n∑

j=1

P (θi|hj) (3)

Finding the best hypothesis then results in maximizing the
score by searching for the best fitting hypothesisθ̂:

θ̂ = arg max
θi∈Θ

π(θi) (4)

This described procedure guarantees increasing hypothesis
scores, the more camera views are being used and easily al-
lows to extend an existing setup by adding more cameras in
order to stabilise the estimation.

The a-posteriori probabilities were derived from confu-
sion matrices that were built per camera whilst evaluating
the classification performance of the trained neural network
on the cross evaluation set. Since confusion matrices tran-
scribe the amount of observed estimations of facial views
when the ground truth of head pose was known, they al-
low to compute the a-posteriori probabilities of pose classes
when a specific single estimation is given. That way, the
posterior probability of a classθi given the observationhj

can be computed as

P (θi|hj) =
kij∑
m kmj

(5)

wherekij denotes the matrix element in rowi and column
j. While the columns define the different estimation classes
being made, ground truth head pose classes are described
by the rows of the matrix respectively.

3.1. Detecting Facial Views

Handling views of the back of the head is crucial for
achieving reliable results when estimating head pose, since
the back of the head only shows hair which differs from
person to person, thus providing arbitrary information in-
stead of reliable features. Therefore, we implemented an-
other neural network which, using the same input patterns
as described in section 2, estimates the a-posteriori proba-
bility of a given head image to actually depict a facial view
of the head. Regarding the combination scheme for single

estimates described previously, ignoring views of the back
of the head was done by setting their respective probabil-
ity P (θi|hj) to zero in equation 3.

Figure 5. Recognizing facial views is crucial
in achieving a robust estimation of the head’s
pose. We trained a neural network to output
the a-posteriori probability of an extracted
head image to actually depict a facial view of
the head. Thereby, all images beyond ±90◦ in
regard to the corresponding camera’s line of
sight are declared as views at the back of the
head.

4. Experimental Results

We evaluated the system with sequences from seven dif-
ferent persons. For each person, one minute of video at a
frame rate of 15 fps was recorded. The test people wore a
magnetic motion tracker in order to provide ground truth
head pose. The persons were advised to move their head as
free and natural as possible.

We implemented multiple network topologies and var-
ied the size of the input patterns for both classifying facial
views and estimating head pose. As it turned out, in case of
a multiuser system, the best results of87.9% in frontal-head
classification were achieved using a size of15 × 20 pixels
for each of the three input images and70 units in the hid-
den layer. Using this topology for recognizing views at the
head’s back, the minimum error of pose estimation was en-
countered using60 hidden units and the same input image
size. Hence, evaluating the system in an unknown user sce-
nario shall be based upon these topologies.

The unknown user scenario was realised by implement-
ing the leave-one-out method, where one person was re-
moved from the training set and exclusively used for evalu-
ation purposes. Table 1 shows the results for this scenario.
As expected, the mean error of head pose estimation de-
creases, as more facial views could be recognized and used



# facial views used
Person 1 2 3 Ø error

1 45.8◦ 28.8◦ 23.5◦ 33.1◦

2 39.9◦ 27.6◦ n/a 36.9◦

3 36.8◦ 22.1◦ 12.9◦ 25.3◦

4 44.6◦ 28.6◦ 32.1◦ 38.0◦

5 65.7◦ 38.2◦ 44.5◦ 53.7◦

6 34.3◦ 19.7◦ 2.9◦ 28.2◦

7 37.3◦ 30.3◦ 14.5◦ 31.8◦

Table 1. Mean errors per person in the un-
known user scenario. Obviously, the error de-
creases as more facial views are combined
into a joint hypothesis. Person 2, 4 and 5 de-
pict how crucial a robust classification of fa-
cial versus rear-views (Table 2) of a head is
for the performance of the proposed combi-
nation scheme.

for building the final hypothesis. This shows clearly how
crucial a robust classification of facial views is, as disjoint
views provide no possibility in building a stable hypothesis
as two neighboured views at the head would. Table 2 dis-
plays the correct recognition rate of facial images for each
of the seven test people, clearly showing the insufficient per-
formance for test person2, 4 and5, which leads to the un-
satisfying results regarding their head pose estimation.

One particular problem facing multi-view head pose es-
timation as described in our setup is characterized by the
large distance at which different views of the correspond-
ing head are captured from. Especially estimates built on
only one recognized facial view suffer from the low res-
olution of the extracted head images. The lack of not be-
ing able to zoom optically even worsens this issue. More-
over, because of different head sizes and shapes, provided
from different camera angles, input patterns suffer from a
lot of noise. Also, the mounting of the cameras at a height
of 2.7m produces views at the head seen from above, which
of course implies a lot of hair being captured inescapably,
especially if the head is tilted further.

Nevertheless, it gets obvious that using more cameras
stabilizes the estimation of a final hypothesis. Especially re-
garding the final results as shown in Table 3, a definite de-
crease of the mean error can be observed. Inevitably, this
leads to the conclusion that using even more cameras than
we did in our setup should further be investigated. In fact,
depending on the room’s dimensions and the location of the
cameras, using four cameras seems to be the very minimum
in covering the complete room as it was presented here.

Correct recognition
Person of facial views

1 87.5%
2 77.9%
3 89.7%
4 80.2%
5 68.5%
6 87.2%
7 84.1%
Ø 82.4%

Table 2. Recognition rate of facial views in
the unknown user scenario. Person 2, 4 and 5
show an unsatisfying high error which leads
to an unstable head pose estimation as de-
picted in table 1.

# facial views used overall
1 2 3 error

multiuser 26.7◦ 18.4◦ 15.5◦ 21.8◦

unkn. persons 44.1◦ 27.8◦ 21.9◦ 35.1◦

Table 3. Overall mean error for both the
known user scenario and the unknown user
scenario. Both results show clearly how the
error decreases the more camera views could
be combined to form the final hypothesis.

5. Conclusions

In this work, we present a neural-network based sys-
tem for estimating horizontal head rotation in a smart-room.
Two neural networks are used in this system: one to estimate
head orientation from facial head images in a range between
±90◦, and the other to recognize facial views of the head.
We describe a statistical combination scheme that integrates
the rotation estimations from different camera views in or-
der to form a joint hypothesis. Our experiments show, that
the mean error decreases as more facial views are available:
accomplished by two facial views of the head, the overall
mean error averaged27.8◦. When using even three facial
views it dropped to21.9◦. The performance of the frontal-
head classifier was82.4% in average, thus indicating that
stabilizing the elimination of views of the back of the head
might lead to even better results in building a final state-
ment about the head’s pose.

Due to the ability of the system to integrate estimates
from multiple views (thus covering the entire room), tracked



persons are allowed to move freely instead of being lim-
ited to a fixed area as often premised by previous work.
Moreover, the described setup depicts an unobtrusive sys-
tem which is working in the background without the need
of wearing head mounted devices in order to achieve com-
plete freedom in movement.

Due to the lack of optical zoom, the cameras currently
used in our system only provide low-resolution images of
the head that further suffer from the varying illuminations at
different locations. However, the experiments show, that the
appearance-based classifier described in this paper is able
to produce viable results for many applications. Concern-
ing that the error might still be too high for fine granulated
pose estimation, a subdivision in coarser pose classes would
allow to classify people’s focus to surrounding objects such
as the whiteboard or audience. However, the approach we
present in this paper is not limited to the described low res-
olution, overhead camera setup. In particular, the additional
use of high resolution sensors with the ability to zoom op-
tically should improve the results dramatically when esti-
mating people’s head orientation. But also being limited to
a similar setup as described here, we would expect to ob-
tain even lower error rates as more cameras become avail-
able.

It should also be noted, that the system currently does
not consider temporal information that could well be used
to smooth the final hypotheses.
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