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Abstract

In this paper, a local appearance based face recognition al-
gorithm is proposed. In the proposed algorithm local infor-
mation is extracted using block-based discrete cosine trans-
form. Obtained local features are combined both at the fea-
ture level and at the decision level. The performance of
the proposed algorithm is tested on the Yale and CMU PIE
face databases, and the obtained results show significant im-
provement over the holistic approaches.

1. INTRODUCTION

Face recognition, as an unsolved problem under the condi-
tions of pose and illumination variations [17], still attracts
significant research efforts. The main reasons for the ongo-
ing research are: the increased need for natural identification
for authentication in the networked society, for surveillance,
for perceptual user interfaces, and the lack of robust features
and classification schemes for the face recognition task.

Face recognition algorithms evolved from anthropomet-
rical feature-based approaches in the 70’s [6] to appearance-
based holistic approaches in the 90’s [15, 2]. In addi-
tion to these techniques, local appearance based approaches
have proved to be promising. Elastic bunch graph match-
ing (EBGM) [16], where local information is derived using
Gabor wavelets, is one of the best performing algorithms
in the FERET evaluations [11], and modular eigenspaces,
where only eye and nose regions are used for identification, is
shown to be superior to the holistic eigenface approach [10].
Moreover, it’s known that variations on the facial appearance
caused by i.e. occlusion, illumination and expression can
lead to modifications on the entire representation coefficients
in a holistic representation scheme. In this respect the ap-
proach of analyzing faces locally is believed to perform su-
perior to the holistic appearance-based approaches, where a
local change effects only the corresponding part of the repre-
sentation and does not modify the representation vector as a
whole.

The main goal of this work is to show that local appear-
ance based face recognition is more robust against variations
on facial appearance than the traditional holistic approaches
(PCA, LDA, ICA). In this paper we utilize local informa-
tion by using block-based discrete-cosine transform (DCT).
The main idea is to mitigate the effects of expression, illu-
mination and occlusion variations by performing local anal-
ysis and by fusing the outputs of extracted local features at
the feature and at the decision level. The reason for prefer-
ring DCT over Karhunen-Loeve transform (KLT), which is
known to be the optimal transform in terms of compactness

Figure 1: Eigenface bases computed from mis-aligned (top)
and well-aligned (bottom) images.

of representation, is mainly because of its data independent
bases. To construct the appropriate bases by KLT for data
representation, one has to align training face images prop-
erly, otherwise the basis images can have noisy appearance.
The effect of alignment can be seen in Fig. 1, where the first
row corresponds to the obtained basis images by performing
KLT on slightly misaligned training images from the CMU
PIE database, and the second row corresponds to the obtained
basis images again by performing KLT but this time on prop-
erly aligned training images from the same database. Al-
though alignment can be done for the entire face with respect
to some facial landmarks such as the centers of the eyes, it
is almost impossible to align local parts of the face as suc-
cessful as the entire face image. Suitable landmarks for each
part of the face cannot be easily found. Hence noisy basis
images from the KLT on a training set of local parts are in-
evitable. Moreover, since DCT closely approximates KLT in
the sense of information packing, it’s a very suitable alterna-
tive for compact data representation.

DCT has been used as a feature extraction step in var-
ious studies on face recognition. Up to now, either DCT
features have been used in a holistic appearance-based sense
[4], or local appearance-based sense which ignores spatial
information during the classification step. In [9], the DCT
coefficients obtained from the image blocks are given as an
input to a multi-layer perceptron, in [12] local DCT coeffi-
cients are modelled with GMM, in [13] a network of net-
works (NoN) model is fed by DCT coefficients and finally
in [8] they are used to represent the image block in a com-
pact form for embedded HMM based classification scheme.
Besides DCT based studies, in [3] KLT is performed on face
images that are divided into smaller sub-images.

Here, we present a novel local appearance based face
recognition approach, which is based on the well-known
DCT for local representation, and which preserves spatial
information. Moreover, we discuss the important problem



of fusing the local observations, and we investigate fusion
methods both at the feature level and at the decision level.

The remainder of the paper is organized as follows. In
Section 2, discrete cosine transform and fusion schemes used
in the study are explained. Experimental results are presented
and discussed in Section 3. Finally, in Section 4, conclusions
and future recommendations are given.

2. METHODOLOGY

2.1 Discrete Cosine Transformation (DCT)

DCT is a well-known signal analysis tool used in compres-
sion standards due to its compact representation power. Al-
though Karhunen-Loeve transform (KLT) is known to be the
optimal transform in terms of information packing, its data
dependent nature makes it unfeasible for use in some practi-
cal tasks. Furthermore, DCT closely approximates the com-
pact representation ability of the KLT, which makes it a very
useful tool for signal representation both in terms of informa-
tion packing and in terms of computational complexity due
to its data independent nature.

2.2 Local Appearance Based Face Representation

Local appearance based face representation is a generic local
approach and does not require detection of any salient local
regions, such as eyes, as in the modular or component based
approaches [5, 10] for face representation. Local appearance
based face representation can be performed as follows: A
detected and normalized face image is divided into blocks of
8x8 pixels size. Each block is then represented by its DCT
coefficients. The reason for choosing a block size of 8x8
pixels is to have small-enough blocks in which stationarity
is provided and transform complexity is kept simple on one
hand, and to have big enough blocks to provide sufficient
compression on the other hand. The top-left DCT coefficient
is removed from the representation since it only represents
the average intensity value of the block. From the remaining
DCT coefficients the ones containing the highest information
are extracted via zig-zag scan.

2.3 Fusion

To fuse the local information, the extracted features from 8x8
pixels blocks can be combined at the feature level or at the
decision level.

2.3.1 Feature Fusion

In feature fusion, the DCT coefficients obtained from each
block are concatenated to construct the feature vector which
is used by the classifier.

2.3.2 Decision Fusion

In decision fusion, classification is done separately on each
block and later, the individual classification results are com-
bined. To combine the individual classification results, we
used the sum rule [7].

3. EXPERIMENTS

We compare the proposed local appearance-based approach
with several well-known holistic face recognition approaches
– Principal Component Analysis (PCA) [15], Linear Dis-
criminant Analysis (LDA) [2], Independent Component

Figure 2: Samples from the Yale database. First row: Sam-
ples from training set. Second row: Samples from test set.

Analysis (ICA) [1], global DCT [4] – as well as another DCT
based local approach, which uses Gaussian mixture models
for modeling the distributions of feature vectors [12]. This
approach will be named “local DCT + GMM” in the remain-
der of the paper. Moreover, we also test a local appearance-
based approach using PCA for the representation instead of
DCT which will be named Local PCA in the paper. In all our
experiments, except for the DCT+GMM approach, where the
classification is done with Maximum-Likelihood, we use the
nearest neighbor classifier with the normalized correlation d
as the distance metric:

d =
ftraining · ftest

‖ ftraining‖∗‖ ftest‖
(1)

3.1 Experiments on the Yale database

The Yale face database [2] consists of 15 individuals, where
for each individual, there are 11 face images containing vari-
ations in illumination and facial expression. From these 11
face images, we use 5 for training, the ones with annotations
“center light”, “no glasses”, “normal”, “sleepy” and “wink”.
The remaining 6 images - “glasses”, “happy”, “left light”,
“right light”, “sad”, “surprised” - are used for testing. The
test images with illumination from sides and with glasses are
put in the test set on purpose in order to harden the testing
conditions. The face images are closely cropped and scaled
to 64x64 resolution. Fig. 2 depicts some sample images from
the training and testing set.

In the first experiment, the performances of PCA, global
DCT, local DCT and local PCA with feature fusion are exam-
ined with varying feature vector dimensions. Fig. 3 plots the
obtained recognition results for the four approaches for vary-
ing number of coefficients (holistic and local approaches are
plotted in different figures due to the difference in the dimen-
sion of used feature vectors in the classification). It can be
observed that while there’s no significant performance differ-
ence between PCA, local PCA and global DCT, local DCT
with feature fusion outperforms these three approaches sig-
nificantly. Fig. 3 shows that Local DCT outperforms Local
PCA significantly at each feature vector dimension which in-
dicates that using DCT for local appearance representation
is a better choice than using PCA. Next, the block-based
DCT with decision fusion is examined, again with varying
feature vector dimensions. Table 1 depicts the obtained re-
sults. It can be seen that further improvement is gained via
decision fusion. Using 20 DCT coefficients, 99% accuracy
is achieved. For comparison, the results obtained when us-
ing PCA for local representation are also depicted in Table 1.
Overall, the results obtained with PCA for local appearance



Figure 3: Correct recognition rate versus number of used co-
efficients on the Yale database. First row: Holistic PCA vs.
holistic DCT. Second row: Local PCA vs. local DCT.

# coeff. DCT PCA
2 72.2% 57.8%
5 94.4% 70.0%
10 98.9% 71.1%
20 98.9% 72.2%

Table 1: Decision fusion results on the Yale database.

represenation are much lower than those obtained with the
local DCT representation.

Table 2 compares the proposed local appearance-based
approaches with the holistic approaches – PCA, LDA, two
variants of ICA (ICA 1, ICA 2), global DCT and the local
DCT+GMM method. In ICA1 and ICA2, as recommended
in [1], most of the energy content is conserved during the
prior PCA-stage. 40 eigenvectors are chosen corresponding
to 97.92% of the energy content. For LDA, again the initial
dimension is first reduced using PCA to the size of X −K,
where here X denotes the total number of samples and K de-
notes the number of classes. Afterwards, LDA is performed
and the dimension is further reduced to K −1, i.e. 14 in this
case. The parameters used in the local DCT+GMM approach
are the same as used in [12].

From the results depicted in Table 2 it can be seen that
the proposed approaches using local DCT features outper-
form the holistic approaches as well as the local DCT fea-
tures modeled with a GMM, which ignores location infor-
mation.

Method Reco. Rate
PCA (20) 75.6%
LDA (14) 80.0%
ICA 1 (40) 77.8%
ICA 2 (40) 72.2%
Global DCT (64) 74.4%
Local DCT (18) + GMM (8) as in [12] 58.9%
Local DCT + Feature Fusion (192) 86.7%
Local DCT (10) + Decision Fusion (64) 98.9%

Table 2: Overall comparison of methods on the Yale
database. In brackets, the number of coefficients is given.

Figure 4: Samples from the CMU PIE database. First row:
Samples from training set. Second row: Samples from test
set.

3.2 Experiments on the CMU PIE database

The face database derived from the CMU PIE face database
[14] consists of 2720 face images of 68 individuals. Each
individual has 40 face images. 20 images are chosen for
training that correspond to normal appearance and expres-
sion variations (from the expression and talking set), and the
rest, which are taken under different illumination conditions,
are used for testing. The face images are aligned and scaled
to a resolution of 64x64 pixels.

As on the Yale face database, the performances of PCA,
global DCT, local PCA and local DCT with feature fusion
are examined with varying feature vector dimensions (Fig.
5). In this experiment, again, local DCT with feature fusion
outperforms PCA, the global DCT approach and the local
PCA. It can be seen that on the CMU PIE database, the global
DCT approach performs worse than PCA. This shows that
global DCT is more sensitive to the illumination variations
than PCA.

In Table 3, the decision fusion results are shown. For
comparison, the results using the PCA represenation are also
depicted. As observed on the Yale database, the results ob-
tained using PCA are considerably lower than the results ob-
tained with DCT representation.

Table 4 summarizes the results obtained with the differ-
ent approaches on the CMU PIE database. As in the experi-
ments with the Yale database, it can be seen that our proposed

#coeff. DCT PCA
10 68.5% 45.7%
20 71.8% 46.8%

Table 3: Decision fusion results on the CMU PIE database.



Figure 5: Correct recognition rate versus number of used co-
efficients on the CMU PIE database. First row: Holistic PCA
vs. holistic DCT. Second row: Local PCA vs. local DCT.

local-appearance based approaches perform superior to the
holistic approaches (PCA, LDA, ICA1, ICA2) as well as the
local DCT+GMM approach. We think that the main reason
for the poor performance of the local DCT+GMM method on
this database is mainly the insufficient number of Gaussian
mixtures to model the features.

By comparing the results obtained on the Yale database
with the ones obtained on the CMU PIE database, it can be
observed that the correct recognition rates obtained on the
CMU PIE database are lower than the ones obtained on the
Yale database. We think that there are two main reasons for
this. The first one is, in the Yale database for testing we
have face images containing expression variations as well as
illumination variations (training face images contain only ex-
pression variations), whereas in CMU PIE all the testing data
consists of face images under illumination variations (train-
ing face images contain only expression variations) which
makes it a harder case. The other reason is the number of
individuals in the databases (15 vs. 68).

4. SUMMARY AND CONCLUSIONS

In this paper we have presented a novel local appearance-
based face recognition approach, which utilizes the block-
based discrete cosine transform for local representation and
which preserves the spatial information of the extracted DCT
features. The proposed approach is quite generic and can be
applied to any object classification problem, since it does not
require any object-specific detection of salient parts.

We investigated fusion schemes, both at the feature level

Method Reco. Rate
PCA (80) 57.1%
LDA (67) 59.5%
ICA 1 (200) 59.1%
ICA 2 (200) 51.8%
Global DCT (256) 44.1%
Local DCT (18) + GMM (8) as in [12] 12.0%
Local DCT + Feature Fusion (640) 70.9%
Local DCT (10) + Decision Fusion (64) 68.5%

Table 4: Overall comparison of methods on the CMU PIE
database.

and at the decision level. We conducted extensive exper-
iments on the Yale and the CMU PIE face databases us-
ing different feature vector dimensions and we thoroughly
compared the proposed algorithm with well-known holistic
appearance-based approaches (PCA, LDA, ICA1, ICA2) as
well as with another local appearance based approach [12]
and with local PCA [3].

From the experimental results, it’s apparent that the pro-
posed local face recognition approach outperforms the holis-
tic approaches, no matter whether the information is fused at
the feature level or at the decision level. The experimental
results also indicate that DCT is a better choice than PCA
for local appearance based face representation. Furthermore,
our experiments show that maintaining spatial information in
the feature vector improves face recognition performance.

While, on the Yale face database decision fusion per-
forms superior, on the CMU PIE database, feature fusion
performs better. A possible reason for this difference could
be the class size. As class size increases, it seems like
it becomes harder to classify faces by local observations.
To overcome this problem, we are planning to try a differ-
ent approach for classification - a hierarchical classification
scheme, in which, first, the number of potential candidates
will be decreased using classification based on feature fusion,
and then decision fusion will be performed for classification
within the resulting subset from the first step. We are also
planning to investigate a hybrid fusion approach, in which
features obtained from the neighboring blocks are combined
first, and then decision fusion is performed over the larger
blocks.
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