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ABSTRACT
In this paper, we present a novel approach for tracking a lec-
turer during the course of his speech. We use features from
multiple cameras and microphones, and process them in a
joint particle filter framework. The filter performs sampled
projections of 3D location hypotheses and scores them us-
ing features from both audio and video. On the video side,
the features are based on foreground segmentation, multi-
view face detection and upper body detection. On the audio
side, the time delays of arrival between pairs of microphones
are estimated with a generalized cross correlation function.
Computationally expensive features are evaluated only at
the particles’ projected positions in the respective camera
images, thus the complexity of the proposed algorithm is
low. We evaluated the system on data that was recorded
during actual lectures. The results of our experiments were
36 cm average error for video only tracking, 46 cm for audio
only, and 31 cm for the combined audio-video system.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis

General Terms
Algorithms, Experimentation, Human Factors

Keywords
Speaker Tracking, Particle Filters, Multimodal Systems

1. INTRODUCTION
Person tracking is a basic technology for realizing context-

aware human-computer interaction applications. The sce-
nario addressed in this work is a smart lecture room, where
information about the lecturer’s location could help to au-
tomatically create an audio-visual log of the presentation.
Here, the location of the lecturer could be used as a target
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for active camera control [14], acoustic beamforming [25]
and audio-visual speech recognition [18] in order to supply
high-resolution images of the speaker and to enhance the
quality of automatic speech recognition.

The task of lecturer tracking poses two basic problems:
localizing the lecturer (in terms of 3D head coordinates) and
disambiguating the lecturer from other people in the room.
In the proposed approach, we jointly process images from
multiple cameras and the signal from multiple microphones
in order to track the lecturer both visually and acoustically.
The algorithm is based on the assumption, that the lecturer
- among all other people in the room - is the one that is
speaking and moving most of the time, i.e. exhibiting the
highest visual and acoustical activity.

The central issue in audio-visual tracking is the question of
how to combine different sensor streams in a beneficial way.
In our approach, we integrate audio and video features such
that the system does not rely on a single sensor or a certain
combination of sensors to work properly. In fact, each sin-
gle camera and each microphone pair alone can contribute to
the track. The main contribution of this paper is a particle
filter framework for the computationally efficient integration
of acoustic source localization, multi-camera person detec-
tion (frontal face, profile face, upper body) and foreground
segmentation. The 3D position of the lecturer is robustly
being determined by means of sampled projection instead
of triangulation.

1.1 Related Work
Person tracking is one of the primary challenges in human-

computer interaction. Already, numerous approaches exist
that deal with this problem, employing a variety of features,
tracking schemes and sensor setups.

For acoustic source localization, several authors have pro-
posed solving this optimization problem with standard gra-
dient based iterative techniques. While such techniques typ-
ically yield accurate location estimates, they are typically
computationally intensive and thus ill-suited for real-time
implementation [1, 2]. For any pair of microphones, the
surface on which the TDOA is constant is a hyperboloid of
two sheets. A second class of algorithms seeks to exploit
this fact by grouping all microphones into pairs, estimat-
ing the TDOA of each pair, then finding the point where
all associated hyperboloids most nearly intersect. Several
closed-form position estimates based on this approach have
appeared in the literature; see Chan and Ho [3] and the liter-
ature review found there. Unfortunately, the point of inter-
section of two hyperboloids can change significantly based
on a slight change in the eccentricity of one of the hyper-



boloids. Hence, a third class of algorithms was developed
wherein the position estimate is obtained from the intersec-
tion of several spheres. The first algorithm in this class was
proposed by Schau and Robinson [19], and later came to be
known as spherical intersection. Perhaps the best known al-
gorithm from this class is the spherical interpolation method
of Smith and Abel [20]. Both methods provide closed-form
estimates suitable for real-time implementation.

Brandstein et al [2] proposed yet another closed-form ap-
proximation known as linear intersection. Their algorithm
proceeds by first calculating a bearing line to the source for
each pair of sensors. Thereafter, the point of nearest ap-
proach is calculated for each pair of bearing lines, yielding
a potential source location. The final position estimate is
obtained from a weighted average of these potential source
locations. Other recent work on acoustic source localization
includes that by Huang et al [9], who developed an iterative
technique based on a spherical least square error criterion,
that is nonetheless suitable for real-time implementation, as
well as the work by Ward et al [24], who proposed using
partice filter together with both time delay of arrival es-
timation and steered beamformers. In other work by the
same authors [11], a variant of the extended Kalman filter
was used for acoustic speaker tracking. This approach was
extended in [8] to add video features.

Concerning video features, it has often be proposed to use
color models for the task of tracking articulated objects like
the human body. Wren et al. [26], e.g., use a region-based
model of color and shape to obtain a 2D-blob representa-
tion of the human body in front of a static scene in their
well-known system ”Pfinder”. Perez et al. [17] apply a color-
based particle filter to the person tracking problem and score
the particles by comparing a histogram-based model of the
target object with histograms of candidate regions. Unfor-
tunately, the appearance of color in real-world scenarios is
fragile because of different light sources, shadowing, and –
specific for our lecture scenario – by the bright and colorful
beam of the video projector that often overlays the lecturer.
Furthermore, neither the skin color nor the color of cloth-
ing is generally specific for the lecturer when compared to
people from the audience.

Mikic et al. [15] rely on background subtraction as their
primary feature, thus their approach does not suffer from
changing color appearance. Their sensor setup is similar to
ours: four fixed calibrated cameras with highly overlapping
fields of view. The main difference is the way in which the
3D location is acquired: Mikic et al. combine foreground re-
gion centroids from different views using triangulation, and
exclude mismatches with high residuals. However, this ap-
proach suffers from over- or under-segmentation as an ef-
fect of noisy foreground classification. Instead of triangu-
lating connected foreground segments, our algorithm per-
forms sampled projections of 3D hypotheses, as proposed
by Zotkin et al. [27], and gathers support for the respective
sample in the resulting image region in each view. It is thus
less dependent on the quality of the segmentation.

Face-detection cascades as proposed by Viola and Jones [23]
are known to be both robust and fast, which makes them a
good feature to support a person tracker. However, search-
ing high-resolution camera images exhaustively for faces in
multiple scales still goes beyond the possibilities of real-time
operation. This is why we propose to apply the detectors
only at the particles’ locations.

We use a particle filter framework [10] to guide the evalua-
tion of the sensor streams and the generation of the tracking
hypothesis. Particle filters have been shown to be applica-
ble successfully to audio-visual tracking for example by [22]
for a video telephony application, by [4] for multi-person
tracking or by [7] for multi-party conversation in a meeting
situation.

2. AN AUDIO-VISUAL PARTICLE FILTER
Particle filters [10] represent a generally unknown proba-

bility density function by a set of m random samples s1..m.
Each of these particles is a vector in state space and is as-
sociated with an individual weight. The evolution of the
particle set is a two-stage process which is guided by the
observation and the motion model:

1. The prediction step: From the set of particles from the
previous time instance, an equal number of new parti-
cles is generated. In order to generate a new particle,
a particle of the old set is selected randomly in consid-
eration of its weight, and then propagated by applying
the motion model. In the simplest case, this can be ad-
ditive Gaussian noise, but higher order motion models
can also be used.

2. The measurement step: In this step, the weights of the
new particles are adjusted with respect to the current
observation zt: πi = p(zt|si). This means computing
the probability of the observation given that the state
of particle si is the true state of the system.

As we want to track the lecturer’s head centroid, each par-
ticle si = (x, y, z) represents a coordinate in space. The
ground plane is spanned by x and y, the height is repre-
sented by z. The particles are propagated by simple Gaus-
sian diffusion, thus representing a coarse motion model:

si,t = si,t−1 · (Nσ=0.2m, Nσ=0.2m, Nσ=0.1m) (1)

Using the features described in Sections 4 and 5, we can
calculate a weight for each particle by combining the nor-
malized probabilities of the visual observation Vt and the
acoustical observation At using an adaptive weighting fac-
tor α:

πi = α · p(At|si) + (1 − α) · p(Vt|si) (2)

The weighting factor α was adjusted dynamically accord-
ing to an acoustic confidence measure that is described in
section 5. The average value of α was approximately 0.4.
Therefore, more weight was given to the video features. A
particle’s weight is set to 0 if the particle leaves the lec-
ture room1 or if its z-coordinate leaves the valid range for a
standing person (1.2m < z < 2.1m). The weighted mean of
the particle set is the final hypothesis about the lecturer’s
location.

3. SAMPLED PROJECTION INSTEAD OF
TRIANGULATION

A common way [15, 6] to obtain the 3D position of an
object from multiple views is to locate the object in each

1We restrict the particles to be within the full width of the
room’s ground plane (0 < y < 7.1m) and half of the depth
(0 < x < 3m).



of the views and then to calculate the 3D position by using
triangulation, i.e. by searching for the intersection of the
lines-of-view (LOVs) from the calibrated cameras to the ob-
ject. However, this approach has several weak points: first
of all, the object has to be detected in at least two different
views at the same time. Second, the quality of triangulation
depends on the points of the object’s images that are chosen
as starting points for the LOVs: if they do not represent the
same point of the physical object, there will be a high tri-
angulation error. Furthermore, searching for the object in
each of the views separately – without incorporating geom-
etry information – results in an unnecessarily large search
space. It would be more efficient to only evaluate those im-
age coordinates in each of the views that make up a valid
3D location when combined with their respective partners
in the other views.

In the proposed method, we followed an approach also
taken by [27] and avoid the problems mentioned above by
not using triangulation at all. Instead, we make use of the
particle filter’s property to predict the object’s location as
a well-distributed set of hypotheses: many particles cluster
around likely object locations, and less particles populate
the space in between. As the particle set represent a proba-
bility distribution of the predicted object’s location, we can
use it to narrow down the search space. So instead of search-
ing a neighborhood exhaustively, we only look for the object
at the particles’ positions.

In order to evaluate a particle, we both use video and
audio features. For video, we project the represented 3D
object location to the image planes and look for evidence of
the object at that point, using the foreground and detection
features described in Section 4. For audio, we calculate the
theoretical time delay of arrival for the hypothesized location
and score it using the generalized cross correlation function
as described in Section 5. The magnitude of the joint evi-
dence from all views and microphone pairs is then used to
adjust the respective particle’s weight in the measurement
step.

When comparing the proposed method to Kalman filter-
based tracking, the following advantage becomes apparent:
As a particle filter is capable of modeling multi-modal distri-
butions, the true distribution of measurement likelihoods is
considered at each step. This way, no information is lost by
suppressing all but the strongest measurement, as it is the
case for Kalman filter’s update step. Furthermore, no data-
association problem occurs as it would be the case when
trying to match object candidates from different views in
order to do explicit triangulation. The latter problem, how-
ever, could also be avoided for Kalman filter tracking using
incremental updates and a linearization of the camera pro-
jection function as shown in [8].

4. VIDEO FEATURES
For the task of person tracking in video sequences, there is

a variety of features to choose from. In our lecture scenario,
the problem comprises both locating the lecturer and disam-
biguating the lecturer from the people in the audience. As
lecturer and audience cannot be separated reliably by means
of fixed spatial constraints as, e.g., a dedicated speaker area,
we have to look for features that are more specific for the
lecturer than for the audience.

Intuitively, the lecturer is the person that is standing and
moving (walking, gesticulating) most, while people from the

Figure 1: Foreground segmentation is performed by
means of an adaptive background model.

audience are generally sitting and moving less. In order to
exploit this specific behavior, we use dynamic foreground
segmentation based on adaptive background modeling as
primary feature, as described in Section 4.1. In order to
support the track indicated by foreground segments, we use
detectors for face and upper body (see Section 4.2). Both
features – foreground F and detectors D – are linearly com-
bined2 using a mixing weight β. So the probability of the
visual information V j

t in view j, given that the true state of
the system is characterized by si, is set to be

p(V j
t |si) = β · p(Dj

t |si) + (1 − β) · p(F j
t |si) (3)

By means of the sum rule, we integrate the weights from the
v different views in order to obtain the total probability of
the visual observation:

p(Vt|si) =
1

v

X
j=1..v

p(V j
t |si) (4)

To obtain the desired (pseudo) probability value which tells
us how likely this particle corresponds to the visual obser-
vation we have to normalize over all particles:

p(Vt|si) =
p(Vt|si)P
i p(Vt|si)

(5)

4.1 Foreground Segmentation
In order to segment the lecturer from the background, we

build an adaptive background model using the algorithm
proposed by [21]. For each pixel, a Gaussian mixture model
represents the pixel’s appearance. If the observed value dif-
fers significantly from the learned distribution, the respec-
tive pixel is assigned to the foreground. The background
model is continuously updated, so that a permanent change
in a pixel’s appearance is anticipated by the background
model after a while. This ensures that people from the au-
dience as well as moved objects become part of the back-

2Note that p(Dj
t |si) and p(F j

t |si) respectively have to be
normalized before combination so that they sum up to 1.



ground, whereas the frequently moving speaker remains in
the foreground.

However, as Fig. 1 shows, the resulting segmentation of
a crowded lecture room is far from perfect. Morphological
filtering of the foreground map is generally not sufficient to
remove the noise and to create a single connected component
for the lecturer’s silhouette. Nonetheless, the combination
of the foreground maps from different views contains enough
information to locate the speaker. Thus, our approach gath-
ers support from all the views’ maps without making any
”hard” decisions like selecting a connected component or a
cluster centroid.

As described in Section 2, the particle filter framework
merely requires us to assign scores to a number of hypoth-
esized head positions. In order to evaluate a hypothesis
si = (x, y, z), we project a person-sized cuboid (x±0.3m, y±
0.3m, 0..z+0.15m) centered around the head position to the
image plane of each camera view, and count the number of
foreground pixels inside the projected polygon. The fraction
of foreground pixels within the polygon is then used as the
particle’s score.

As this calculation has to be done for each of the particles
in all views, we use the following simplification in order to
speed up the procedure: all cameras are set upright with
respect to the ground plane, so the projection of the cuboid
can be approximated by a rectangle orthogonal to the image
plane, i.e. the bounding box of the projected polygon (see
Fig. 2).

The sum of pixels inside the bounding box can be com-
puted efficiently using the integral image introduced by [23].
Given the foreground map m(x, y), the integral image ii(x, y)
contains the sum of the pixels above and to the left of (x, y):

ii(x, y) =

yX
y′=0

xX
x′=0

m(x′, y′) (6)

Thus, the sum of the rectangle (x1, y1, x2, y2) can be deter-
mined by four lookups in the integral image. So the particle
score for the foreground feature is defined by the sum of
pixels inside the bounding box normalized by the size of the
bounding box:

p(F j
t |si) =

ii(x2, y2) − ii(x1, y2) − ii(x2, y1) + ii(x1, y1)

(x2 − x1 + 1)(y2 − y1 + 1)
(7)

Using the recurrent formulation from [23], the generation of
the integral image only takes one pass over the foreground
map, so the complexity of the foreground feature prepara-
tion is linear to the image size. The evaluation of one particle
can then be done in constant time, and is thus independent
of the image resolution and the projected size of the per-
son tracked. Note that this is not limited to the foreground
segmentation: in general, any kind of support map (e.g. his-
togram backprojection) could be used to contribute to the
tracking at this stage.

4.2 Face and Upper Body Detection
As we aim at tracking the coordinates of the lecturer’s

head – serving as model point for the full body –, we need
a feature that gives evidence for the head position. The
face detection algorithm proposed by Viola and Jones [23] is
known to be both robust and fast: it uses Haar-like features
that can be efficiently computed by means of the integral
image, thus being invariant to scale variations. The features

(x1,y1)A

(x2,y2)A

(x, y, z)

(x1,y1)B

(x2,y2)B

Figure 2: For each particle, a cuboid centered
around the hypothesized head position (x, y, z) is
projected into the views A and B. The result-
ing polygon is approximated by a bounding box
(x1, y1, x2, y2)

A/B.

are organized in a cascade of weak classifiers, that is used to
classify the content of a search window as being face or not.

Typically, a variable-size search window is repeatedly shif-
ted over the image, and overlapping detections are combined
to a single detection. Exhaustively searching a W×W image
region for a F ×F sized face while incrementing the face size
n times by the scale factor s requires the following number
of cascade runs (not yet taking into account post-filtering of
overlapping detections):

#cascade runs =

n−1X
i=0

“
W − F · si

”2

(8)

In case of for example a 100x100 pixel image region, and a
face size in between 20 and 42 (n = 8, s = 1.1), this results
in 44368 cascade runs.

In the proposed particle filter framework however, it is
not necessary to scan the image exhaustively: the places
to search are directly given by the particle set. For each
particle, a head-sized cuboid (30cm edge length) centered
around the hypothesized head position is projected to the
image plane, and the bounding box of the projection de-
fines the search window that is to be classified. Thus, the
evaluation of a particle takes only one run of the cascade:

#cascade runs = #particles (9)

The face detector is able to locate the vertical and horizon-
tal position of the face precisely with respect to the image
plane. However, the distance to the camera, i.e. the scaling,
cannot be estimated accurately from a single view. In order
to achieve tolerance against scale variation and to smooth
the scores of nearby particles, we set the i-th particle’s score
to the (average) overlap3 between the particle’s head rectan-
gle ri = (x1, y1, x2, y2) and all the positively classified head
rectangles r′0..N by any of the other particles:

p(Dj
t |si) =

1

N

NX
n=0

overlap(ri, r
′
n) (10)

A detector that is trained on frontal faces only is unlikely
to produce many hits in our multi-view scenario. In order

3The auxiliary function overlap(a, b) calculates the ratio of
the shared area of two rectangles a and b to the sum of the
areas of a and b.



Figure 3: Snapshot from a lecture showing all 4 camera views. The native resolution is 640x480.

to improve the performance, we used two cascades for face
detection: one for frontal faces in the range of ±45◦ and one
for profile faces (45◦−90◦)4. Our implementation of the face
detector is based on the OpenCV library, that implements
an extended set of Haar-like features as proposed by [13].
This library also includes a pre-trained classifier cascade for
upper body detection [12]. We used this detector in addi-
tion to face detection, and incorporated it’s results using the
same methods as described for face detection.

5. AUDIO FEATURES
The lecturer is the person that is normally speaking, there-

fore we can use audio features using multiple microphones
to detect the speaker position. Consider the j-th pair of
microphones, and let mj1 and mj2 respectively be the po-
sitions of the first and second microphones in the pair. Let
x denote the position of the speaker in a three dimensional
space. Then the time delay of arrival (TDOA) between the
two microphones of the pair can be expressed as

Tj(x) = T (mj1,mj2,x) =
‖x−mj1‖ − ‖x−mj2‖

c
(11)

where c is the speed of sound. To estimate the TDOAs a
variety of well-known techniques [16, 5] exist. Perhaps the
most popular method is the phase transform (PHAT), which
can be expressed as

R12(τ) =
1

2π

Z ∞

−∞

X1(e
jωτ )X∗

2 (ejωτ )

|X1(ejωτ )X∗
2 (ejωτ )| ejωτ dω (12)

where X1(ω) and X2(ω) are the Fourier transforms of the
signals of a microphone pair in a microphone array. Nor-
mally one would search for the highest peak in the resulting
cross correlation to estimate the position. But since we are
using a particle filter, as described in Section 2, we can sim-
ply set the PHAT value at the time delay position Tj(x = si)
of the MA pair j of a particular particle si as

p(Aj
t |si) = max(0, Rj(Tj(x = si))) (13)

As the values returned by the PHAT can be negative, but
probability density functions must be strictly nonnegative,
we found that setting all negative values of the PHAT to
zero yielded the best results.

To get a better estimate we repeat this over all m pair of
microphones (in our case 12), sum their values and normalize
by m:

p(At|si) =
1

m

mX
j=1

p(Aj
t |si) (14)

4The profile face cascade has to be applied twice: to the
original image and to a horizontally flipped image.

 

z 

Cam 4 

Cam 1 

Whiteboard 

Cam 3 

Cam 2 

Speaker area 

 5.9 m 

7.1 m 

Table 

Audience 

Mic B 

M
ic A

 

M
ic C

 

y 

x 

Figure 4: The lecture room is equipped with four
fixed cameras and three 4-channel microphone ar-
rays. Lecturer and audience typically reside in the
depicted areas, but are not limited to these areas.

Just like for the visual features, we normalize over all par-
ticles in order to get the acoustic observation likelihood for
each particle:

p(At|si) =
p(At|si)P
i p(At|si)

(15)

The weighting factor α used in equation 2 was set by

α =
m0

m
· 0.6 (16)

where m is the total number of microphone pairs and m0

the number of PHAT values above 0. The maximum weight-
ing factor of 0.6 for the audio features has been determined
experimentally.

6. EXPERIMENTS AND RESULTS
In order to evaluate the performance of the proposed al-

gorithm, we ran experiments on recordings of real lectures
that were held at the University of Karlsruhe by students,
visitors and members of the lab.

6.1 Lecture Dataset
The dataset for the evaluation consists of a total num-

ber of 5 recordings, each featuring a different speaker. The
length of a recording is typically 45min. The lectures are
complemented by slides which are projected to a whiteboard
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Figure 5: Each array is made up of four microphones
in a T-shaped setup.

next to the speaker. Apart from the lecturer, there is a num-
ber of about 5-20 people in the audience. As can be seen
in Fig. 4, there is no clear separation between speaker area
and audience. It must further be noted that every once in
a while, auditors cross the speaker area in order to enter or
to leave the room.

For our experiments, we used 4 fixed cameras that are
placed at a height of 2.7m in the room corners. Their joint
field of view covers almost the entire room. The images are
captured at a resolution of 640x480 pixels and a framerate of
15 fps, and stored as jpg-files for offline processing. To cap-
ture the lecturer’s speech, we used 3 T-shaped microphone
arrays that are placed on the walls. The wall behind the
lecturer does not carry microphones, as they would hardly
capture direct sound from the lecturer. As depicted in Fig-
ure 5 each array consists of 4 microphones: 3 at the bottom
of the box with a inner distance of 20 cm and one 30 cm
above the center microphone. The microphones were all
recorded synchronously using an RME Hammerfall sound
card at a samplerate of 44.1 kHz and a resolution of 24 bit.

From each of the 5 lectures two segments (each approxi-
mately 15min) were extracted and used for evaluation. In all
of the resulting 10 segments and each of the 4 views, the lec-
turer’s head centroid was labeled manually every 10th frame.
By means of the calibration information, a 3D label file was
generated and serves as ground truth for the evaluation. A
separate training dataset has been used to tune tracking
parameters and to train the face detection cascades. This
training set consists of different lectures that were collected
using the same setup as for the evaluation set.

6.2 Experiments
In a preliminary experiment, the ideal number of particles

- being an important parameter both for performance and
speed - was to be determined on the training set. As Fig. 6
shows, the tracking performance improves up to a particle
number of about 300. Beyond that point, the system ap-
pears to be saturated. Thus, a number of 300 particles has
been used for the actual evaluation.

The actual evaluation results presented in Table 1 are av-
erage values of all 10 lecture segments, i.e. 127min of lec-
ture data and 5 different speakers. The error measure is the
average Euclidean distance between the hypothesized head
coordinates and the labeled ones.

It can be seen that even though the video-only tracker
performs considerably better than the audio-only tracker,
the performance can still be significantly increased by com-
bining both modalities. This effect is particularly distinctive
during one recording in which the lecturer is standing most
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Figure 6: Tracking performance in relation to the
number of particles. This experiment has been con-
ducted on a separate training dataset.

Tracking mode Avg. error

Video only 36.3cm
Audio only 46.1cm
Video + Audio 30.5cm

Table 1: Error in 3D head position averaged over 2
hours of actual lectures.

of the time in one dark corner of the room, thus being hard
to find using solely video features (116cm mean error). In
combination with audio, the error could well be reduced.

6.3 Implementation and Complexity
On the video side, the proposed algorithm consists of two

parts that can be characterized by their relation to the three
factors that determine the runtime of the algorithm. The
feature preparation part (foreground segmentation, integral
image calculation) is related linearly to the image size S
and a constant time factor tV S . In contrast, the particle
evaluation part is independent from S and related linearly
to the number of particles P and a constant tV P . Both parts
are likewise related linearly to the number of views V . On
the audio side, the runtime is linearly related to the number
of microphone pairs M . Like in the video case, this can be
further decomposed into a constant preprocessing part tAM

and a part tAP that has to be repeated for each particle.
Thus, the total processing time per frame is determined by:

ttotal = (tV S · S + tV P · P ) · V + (tAM + tAP · P ) · M (17)

On a standard desktop PC (3.0GHz) we measured the fol-
lowing values for the constants in our implementation:

tV S = 4.63 · 10−5 ms

tV P = 1.01 · 10−1 ms

tAM = 1.25 · 101 ms

tAP = 1.06 · 10−1 ms

Given the proposed number of particles P = 300, the native
camera resolution5 S = 640 · 480, and the V = 4 cameras
from our setup, the processing time for a video frame was
178 ms. Given a number of M = 12 microphone pairs, the

5The full resolution was only used for the detectors, while
the foreground segmentation runs at 4 times lower scale.



time to process the audio signal corresponding to one video
frame was 532 ms. It has to be noted, however, that our
implementation is straightforward and could certainly well
be improved for speed – especially in the audio part.

As Equation 17 indicates, the visual part can be intu-
itively parallelized for the number of views V . We imple-
mented such a video-only tracker using 4 desktop PCs, each
connected to a camera, in a way that the image processing is
done locally on each machine. Because only low-bandwidth
data (particle positions and weights) are shared over the
network, the overhead is negligible, and a speed of 11 fps
(including image acquisition) could be realized.

7. CONCLUSION
We presented an algorithm for tracking a person in real-

time using multiple cameras and multiple pairs of micro-
phones. The core of the proposed algorithm is a particle
filter that works without explicit triangulation. Instead, it
estimates the 3D location by sampled projection, thus bene-
fiting from each single view and microphone pair. The video
features used for tracking are based on adaptive foreground
segmentation and the response of detectors for upper body,
frontal face and profile face. The audio features are based on
the time delays of arrival between pairs of microphones, and
are estimated with a generalized cross correlation function.

The audio-visual tracking algorithm was evaluated on re-
cordings of actual lectures and yielded a performance of
30.5cm average error in localizing the lecturer’s head. Thus,
the combined tracker clearly outperforms both the audio-
and video-only tracker. One reason for this is that the video
and audio features described in this paper complement one
another well: the comparatively coarse foreground feature
along with the audio feature guide the way for the face de-
tector, which in turn gives very precise results as long as it
searches around the true head position. Another reason for
the benefit of the combination is that neither motion and
face detection nor acoustic source localization responds ex-
clusively to the lecturer and not to people from the audience
– so the combination of both increases the chance of actually
tracking the lecturer.
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