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Abstract 

We propose a set of informative fea- 
ture functions together with a log-linear 

model framework for bilingual phrase- 

pair extraction to improve phrase- 

based statistical machine translation. 
The base feature functions investigated 

are phrase length model, phrase-level 
centers’ distortion, lexicon translation 

equivalence, bracketing constraints and 

word alignment links. Two gener- 

ative models show strong baselines 

with these base features, illustrating 

the effectiveness of the proposed fea- 
ture functions. Strategies of extending 
the features and a log-linear model of 

learning the weighted combination of 

them are proposed to effectively extract 

phrase-pairs from parallel data. Exper- 

imental results of TIDES’03 Chinese- 
English small data track show improved 

translation qualities. 

1 Introduction 

Bilingual phrase-pair extraction from parallel 
data becomes a key component in today’s state 
of the art phrase-based statistical machine trans- 

lation systems. The significant advantages of us- 
ing phrase-pairs over word level mixture mod- 

els (Brown et al., 1993) are that both fertilities 

and distortions above phrase level are simpler to 

model and phrase-based approaches have flex- 
ibilities of modeling local word-reordering and 
are less sensitive to the preprocessing errors such 

as word segmentations (e.g., for Chinese and 

Japanese) and tokenization. These advantages are 

observed and supported by the positive evidences 

from many previous works such as (Wu, 1997; 

Och and Ney, 2004; Koehn et al., 2003; Zens and 

Ney, 2004; Vogel et al., 2003). 
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In practice, a phrase-pair extraction based on 

word alignment (Koehn, 2004; Tillmann, 2003; 

Och and Ney, 2004) works quite well given sim- 
ple heuristics and millions of parallel sentences 

to cover enough instances needed for translation. 

However, it is more or less difficult to extend 

the heuristics to include more informative clues 
for better phrase-pair extractions. We propose a 

principled framework of combining a set of in- 
formative feature functions via a log-linear model 

for bilingual phrase-pair extraction. In particu- 

lar, we introduce a few informative feature func- 

tions in keeping the philosophy of phrase transla- 

tions. The base feature functions are designed to 
model three diverse aspects of a block (a phrase 
pair): a phrase-level length model to approxi- 
mate phrasal length relevance, a center distortion 

model to model relative positions’ differences for 

phrases in a given sentence pair and a genera- 

tive phrase level lexical model to model trans- 

lational equivalence. Furthermore, we extend 

the base feature functions by symmetrizing with 

noisy-channel models in two directions: source- 

to-target and target-to-source. The utilities of 

the proposed features are demonstrated using two 
generative models establishing strong baselines; 

together with constraints from word alignments, 
these feature functions are combined in a log- 
linear model to extract phrase pairs effectively; 

improved translation qualities are achieved over 
a state of the art system on TIDES’03 Chinese- 

English small data tack. 

The remainder paper is structured as follows: 
in Section 2, statistical machine translation is 

briefly reviewed with notations for Blocks; in 

Section 3, base feature functions are explained; 

Section 4 contains two novel generative models as 

our baselines; our proposed log-linear model with 

extended feature functions are in Section 5; in 

Section 6, our experimental results; conclusions 

and discussions are given in Section 7.



2 Statistical Machine Translation 

Generally speaking, the task of statistical machine 

translation (SMT) is to translate one sentence in 

a source language F into a target language E. For 

example!, given a French sentence f with J words 

denoted as fi = fif...fy, an SMT system auto- 
matically translates it into an English sentence e 

with I words denoted by e . The 

SMT system first proposes English hypotheses in 

its model space. Among all the hypotheses, the 

system selects the one with the highest condi- 

tional probability according to Bayes’s decision 

tule as follows: 

éf = arg max P(e{| fj) = arg max P(fj/|e{) P( 
tet} fet} 

d) 
where P(fj/|e{) is called translation model and 

P(e4) is the language model. For most of the 
phrase based machine translation systems, the 

translation model are essentially a collection of 

bilingual phrase-pairs extracted from parallel sen- 

tence pairs. This paper focus on how to extract 

high quality phrase-pairs from parallel data. 

Each phrase pair is represented as a Block: X in 
a given parallel sentence pair: 

xo Ae), (2) 

where a is the source phrase with (J + 1) 

French words; its projection is é + in the tar- 

get sentence with left boundary at the position 

of i and right boundary at (i + k). We view 
the phrase-pair extraction as a local search algo- 

rithm: given a source phrase ft search for the 

projected boundaries of candidate target phrase 

e +k according to a weighted combination of di- 

verse feature functions in a log-linear model. The 

log linear model then servers as a performance 

measure to guide a local search (i.e., a stochas- 

tic hill-climbing) to extract bilingual phrase pairs 

from the parallel data. 

3 Base Feature Functions 

We introduce several informative base feature 
functions, some of which are shown to be helpful 

in our previous works (Zhao and Vogel, 2005). 

They’ll be briefly summarized here to be more 

‘We follow the notations used in (Brown et al., 1993) 

I 
ei); 

80 

self-contained. Each of the feature functions cor- 
responds to one special aspect of the block em- 

bedded in the context of a given sentence pair. 

These aspects are then quantified by the proposed 

sub-models or our designed feature functions. 

3.1 A Phrase-Level Length Model 

Given the word fertility defined as in (Brown et 

al., 1993), we can compute a probability to pre- 

dict phrase length relevance between a pair of 

phrases: given the candidate target phrase (En- 

glish) ef and a source phrase (French) fi of 

length J, the model gives the probabilistic esti- 

mation of P(J|e/) via a dynamic programming 
algorithm using the English word fertilities mod- 

els P(dle;). Figure 1 shows an example fertility 

Figure |: A trellis of an English trigram with 

maximum fertility of 4 for dynamic programming 

trellis of an English trigram, where each edge be- 

tween two nodes represents one English word e;. 

The arc between two nodes represents one candi- 

date non-zero fertility for word e;. The fertility 

of zero (i.e., generating a Null word) corresponds 

to the direct edge between two nodes and thus, 

the Null word is incorporated into this model’s 

representation. Each arc is associated with a En- 

glish word fertility probability P(¢;|e;). A path 
gf through the trellis represents the number of 

French words ¢; generated by the English tri- 

gram. Thus, the probability of generating J words 

from the English phrase along the Viterbi path is: 

I 

max Il P(dile:) (3) P(J\et) = - x 
{$1 J=Diar Oi} jaa 

The Viterbi path is inferred via dynamic pro- 

gramming as follows: 

17,1 — 1] + log Pruu(Ole:) 
1,8 — 1] + log Ps(1¢;) 

o|j — 2,4 — 1] + log Ps (2|e;) 

olj — 3,4 — 1] + log Ps (3Ie;) 

oj, i] = maa



where Py ,i(Ole;) is the probability of generating 
a Null word from e;; Py(k = 1le;) is the usual 
word fertility model of generating one French 

word from the word e;; ¢[j, i] is the cost so far 
for generating j words from e} : €1,--- ,e;. Af- 

ter computing the cost of ¢[J, 1], we can trace 
back the Viterbi path, along which the probabil- 

ity P(J|e{) of generating J French words from 
the English phrase ef as shown in Eqn. 3. 

Thus, for each block, one can compute a fertil- 

ity based score Eqn. 3 to estimate to how relevant 

the phrase pairs’ lengths are to each other. 

3.2 A Center-Distortion Model 

As introduced in Section 1, the distortion model 

above phrase level is usually easier to model. Em- 

pirical observations show that most high quality 

blocks are located close to the diagonal or the in- 

verse diagonal in the alignment matrix of a sen- 

tence pair. A simple distortion model is designed 

to estimate how far away the phrase pairs are from 

each other. 

The center Ope of the phrase an is a nor- 

malized relative position in the source sentence 

defined as follows: 

Opt == 
fj 

The center of the English phrase is computed ac- 

cordingly. Figure 2 shows histograms of the dif- 

ferences between the centers: (© f +k) Of j41— 

30.84 oracle phrase pairs extracted from 627 hu- 

man word-aligned sentence pairs: for each source 

phrase, find the left-most and right-most pro- 

jected positions in the target sentence according 

to both word alignment and the coherence con- 

straint (Fox, 2002). 

For phrase-pair extraction, the expected center 

of the phrase elt i is estimated for a given French 

phrase’s center and then a local search starting 

around it is carried out to get candidate target 

phrases. The expected relative center for every 

French word f;y is first computed as follows: 

DIAP w- PFirle ) 
DYE? PUfirlew) 

where P(fj-|e;) is the word translation lexicon 

estimated in IBM Models. i is the position in- 

¢ et (Fy) = ; . 
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Figure 2: Histogram of relative centers’ differ- 
ences between oracle phrase pairs (blocks) ex- 

tracted from 627 human word-aligned parallel 

sentence pairs. 

dex, which is weighted by the word level trans- 

lation probabilities; the term of a P( frei) 
provides a normalization so that the expected cen- 

ter is within the range of target sentence length. 

After this, the expected center of elt i is simply a 

average of © deitk (fj): 

1 jel 

O,itk = (6) 
& [+1 y 

Given the estimated centers of ¢ © ptt and 

3) eiths we can compute how close they are 

be the probability of P(¢ pyxlo eth): To 

estimate PO pinlOeire), one can start with 

a flat gaussian model to enforce the point 

of (©, ths pit) not too far off the diago- 

nal and build an initial list of phrase pairs 

and then compute the histogram to approximate 

As shown 

in Figure 2, this probability can be approximated 

as a gaussian distribution. 

3.3. A Phrase-Level Lexicon Model 

Similar to IBM Model-1 (Brown et al., 1993), we 

use a bag-of-word generative model within the 

block. According to Bayes rule: 

PCA el) = 
TL SS Pile) 

HEVI+Y i €[i,i+k] 

Plev|ei**) 7)



where P(e; leit) ~ ~ 1/(k + 1) is approximated 
by a unigram bag-of-word language model. Be- 

cause phrase-pairs are usually very short, this as- 

sumption works very well in practice (Koehn et 

al., 2003; Brown et al., 1993). 

The parameters used by the three feature func- 

tions are estimated using IBM Model-4. 

4 Two Generative Models 

We here present two generative models of 
Pr( fat ei**) for phrase-pair extraction. The 
first one models three aspects of a phrase pair, 

i.e., the phrase level lexical translation equiva- 

lence, positions’ distortion and length relevance. 

The second one takes into consideration of brack- 

eting a sentence pair at a block level and generate 

sub-blocks synchronously. 

4.1 Generative Model-1 
(pith) ik < ses To model Pr(fj""|e;*"), Model-1 first proposes 

how many words of fj to generate according to 

Pil + qeit*); then it proposes the location of 

the source phrases Ae by predicting the center 

Opt of the phrase: and then the model gener- 

ates the words f; according to a lexicon model 

P(f\e). The model is summarized in Eqn. 8. 

Pr( fit eit*) = mas PI (1+ eit) « 

PO pHlO felt’) (8) ith) PC 

where the three components P(/+1|e/**), 
P(Oprt|Ogrr) and P(f eft) control three 

different aspects of a bilingual phrase pair: phrase 

level fertility, center distortion and translation 

equivalence as explained in the previous section. 

A variation of this model is applied in a ACLOS 
shared task for phrase-based statistical machine 

translation (Zhao and Vogel, 2005). 

4.2 

Instead of modeling the three aspects individually 

as in Model-1, we propose to model the brack- 

ets induced by the segmentation of the parallel 

sentence pair given a block. Shown in Figure 3, 

a phrase pair (block A) split the sentence pairs 
into five shaded parts A, B,C, D, E, which are 

the valid parts to be generated in our Model-2. 

Generative Model-2: Bracketing 
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D 

Figure 3: Ngram Bracketing Model 

We enforce the following bracketing constraints 

so that one can only bracket the sentence pair in 

the following two ways: 

él(f,e) > [B,A,C] 
6 (fie) = <D,A,E>, (9) 

where 6! indicates the bracketing along the di- 

agonal and 6<> indicates the inverse bracketing. 
Each bracketing direction is associated with a 

probability under the same assumption of “bag- 

of-words” generation as in Eqn. 7. In a way, 

this model relates to the bilingual bracketing (Wu, 

1997) as it requires the other two brackets (either 

(B, C) or (D, E)) to be generated synchronously. 
However, the model is a flat one because it re- 

quires only one level bracketing for any given 

block A. The model is summarized as follows: 

Pr(fd*ei**|e,£) = apex, Pllef), (10) 

where P(dlle,f) ~ P(A)P(B)P(C); and 
P(A), P(B) and P(C) are defined similarly as 
in Eqn. 7 using the lexicon of P(f\e). 

The parameters P(f|e) are from IBM Model- 
4. Using the constraints from the bracketing in 
Eqn. 9, this model gives quite good performance 

shown in our experiments. 

4.3 A Local Search for Blocks 

Both Eqn. 8 and Eqn. 10 involve some local 
search within a sentence pair: given a source 

phrase i +! search for the candidate phrase trans- 

lation otk in the target sentence according to 

the score computed in Eqn. 8 or Eqn. 10. In 

practice, only the phrase pairs to be used in de- 

coding are searched, i.e., we only search phrase 
pairs in which the source phrase fr is seen in 

a pre-defined list to save computations and disk



space. With Eqn. 8 or Eqn. 10 as the performance 

measures, we employ a twisted stochastic hill- 

climbing, in which several down-hill moves are 

accepted to allow one or two left or right func- 

tional words to be attached to eit, 

To make the local search more effective, we 

normalize the lexicon model P(f|e) within the 
parallel sentence pair in Eqn. 11 

__ P(fle) Pile) = — Pld 
10 * ST Puro 

qd) 

In this way, the distribution of P(f|e) is sharper 
and more focused in the context of a sentence pair. 

We’ll use the aforementioned two generative 

models as our baselines. The sub models are gen- 

eralized and extended as feature functions in our 
proposed log-linear model for phrase-pair extrac- 

tion in Section 5. 

5 A Log-Linear Model 

The phrase level fertility model (3.1), distortion 

model(3.2), lexicon model(3.3) and the bracket- 

ing model in 4.2 are all real-valued and bounded 

(€ [0,1]). We define a log-linear model to com- 
bine these sub-models in Eqn. 12: 

Pr(X|e,f) = 

CxS mat Andm(X €5£)) 
Levy eeP(Dyrer Amen (X7,€, f)) 

where @m(X,e,f) is a feature function corre- 

sponding to the log probabilities (i.e. raw scores) 
from the models listed above. The parameters are 

the feature functions’ weights {yn }. 

(12) 

5.1 Feature Extensions with Brackets 

We define three base feature functions 

E2FFScoreln: P(l + tet); E2FIBMScoreIN: 

P(ft |e"); and E2FIBMBracket: Pr(X|e, f) 
as refereed in Section 4. 
We then extend the base feature functions by 

considering the remaining part of the sentence 

pair excluding the block. This means, the re- 

gion exclude block A in Figure 3. The motivation 

is if the block is of high quality, the remaining 

part should also be explained well by the model. 
Therefore, we add the following three extended 

feature functions: 
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e E2FFScoreOut: P(J—l-lleveiie+n)) 
which estimates how well the remaining 

English words ejgjj,;,4) can generate the 
remaining sentence length of (J—/—1). 
This model can be computed similarly via 

dynamic programming as in 3. 

E2FIBMScoreOut: Generating the remain- 

ing French words in the sentence pair: 

P( fray gsylevgiarn) = 

T] So Peter) Perlevepirn)- 
FEVIFY VELL I+K] 

This estimates how well the translational 

equivalence are kept in accordance with the 
philosophy of the phrase extraction from a 
parallel sentence pair. 

AlignmentLinks: Averaged word alignment 

links per source word. We count how many 

alignment links within the block and normal- 

ize this number by the length of the source 

phrase. 

5.2. Feature Extensions via Symmetrization 

As introduced in Eqn. 1, so far all our mod- 

els’ parameters are using one direction noisy- 

channel model. In practice, we train both di- 

rections of IBM Model-4 — source-to-target and 

target-to-source to further extend our base fea- 

ture functions. In this way, we obtain the lexi- 

con models P(f|e) and P(e|f), the fertility mod- 

els P(gle) and P(¢|f) to compute the feature 
functions defined in Section 5.1. Therefore, we 

have additional five more feature functions of 
F2EFScoreIn, F2EFScoreOut, F2EIBMScoreIN, 

F2EIBMScoreOut and F2EIBMBracket defined 

accordingly as in Section 5.1. Therefore, we have 

in total 11 real-valued feature functions for bilin- 

gual phrase-pair extraction. Except the feature 

function of AlignmentLinks, the other 10 feature 

functions are all bounded in the range of (0, 1]. 

5.3. Learning and Inference 

Using direct maximum entropy model for statis- 

tical machine translation was explored in (Pap- 

ineni et al., 1998). To learn the log-linear model 

in Eqn. 12, a maximum bleu score optimizer im- 
plemented in (Koehn, 2004) is modified with a



sampling of N-Best list phrase pairs generated by 

an initial assignment of weights. To optimize the 

weights, we view each extracted phrase-pair as 
a hypothesis block and the reference blocks are 
extracted from the human word-aligned sentence 
pairs as described in Section 3.2. We compute 

word-level F-measure for each extracted block ac- 

cording to all the reference blocks, which contain 

the same extracted source phrase. Therefore, the 

data point for optimization is M raw scores ? of 
feature functions together with a performance in- 

dicator of word-level F-measure. Finally, a mod- 

ified optimizer similar to (Och and Ney, 2002) is 

utilized to obtain the optimized weights for the 
proposed feature functions. 

The inference is similar to the one in Sec- 
tion 4.3: a hill-climbing with a performance mea- 

sure to score the phrase pairs (ff aan e**) accord- i 
ing to the log-linear model as in Eqn 13: 

M 

X = argmax > Amom(X,e, f), 
{x} 

(13) 
m=1 

where @(X, e, f) are log probabilities computed 
using the models from Section 3 and their exten- 

sions in Section 5.1 and 5.2. 

6 Experimental Results 

We evaluate our proposed phrase extraction mod- 

els under the conditions of TIDES’03 Chinese- 

English statistical machine translation Small- 

Data track. A small 10K LDC bilingual dictio- 

nary is allowed to be used and the entries in the 

dictionary are used as additional phrase pairs. Ta- 

ble | summarizes the data statistics. 

English [ Chinese 

Sent. Pairs 4172 

Train | Words 133598 | 105331 
Voc Size 8359 7984 

Sent. Pairs 919 

Test Words - 26232 

Voc Size - 4947 

Table 1: Training and Test data statistics 

Using GIZA++(Och and Ney, 2003), we 

trained the IBM-Model-4 in both directions for 

>The log probabilities from sub-models 
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the fertility tables, lexicons and word alignments. 

We then refine the word alignment by growing 

the intersections from two directions with new 
unaligned word pairs which occur in the union 
(Koehn et al., 2003). We report NIST and Bleu 

(Papineni et al., 2002) scores as the translation 

performance measures using a decoder in (Vo- 

gel et al., 2003). The trigram language model is 

trained using Gigaword Xinhua news part. 

6.1 Baseline Generative Models 

The two generative models Eqn. 8 and Eqn. 10 

give strong baselines. In the local search of 

phrase pairs in Eqn. 8 and 10, the Jop-N scored 

target phrase candidates for each source phrase 

within the sentence pair are collected for decod- 

ing. There is no significant difference observed 

between the two generative models. Figure 4 

shows the performance of Model-2 over Top-N 

configurations, in which the Top-7 gives the best 
performance. However, Top-4 configuration al- 

ready gives performance close to the optimal and 

we can avoid extracting too many noisy phrase- 
pairs which significantly slow down the decoding 

process. In the experiments so forth, we'll use up 

to Top-4 candidates for phrase-pair extraction. 

Bracket Model Top 1~20 

1234567 8 9 10 15 20 
Top-N, N is from 4 to 20 

0.174 
0.172 
O17 

= 0.168 
= 0.166 
3 0.164 
® 0.162 

0.16 
0.158 
0.156 

Figure 4: Baseline of Generative Model-2: 

Bracketing Models 

Table 2 summarizes the baselines from the 

two generative models. The best baseline model 

is Model-1 using the Top-2 configuration for 

phrase-pair extraction. 

6.2 Pair-wise Correlations among Features 

The pair-wise correlations among the 11 (/=11) 

real-valued feature functions are investigated. 
The MxM correlation matrix is obtained by



Mode-1 Model-2 

Top-N || Nist l Bleu l Nist [ Bleu 

Top-1 6.4976 | 0.1597 || 6.3618 | 0.1611 

Top-2 || 6.6749 | 0.1726 || 6.5385 | 0.1688 

Top-3 || 6.5934 | 0.1687 || 6.5364 | 0.1700 

Top-4 || 6.5752 | 0.1701 || 6.5243 | 0.1707 

Table 2: Baselines of two generative models 

computing the pairwise linear correlation coef- 

ficient between the feature functions using the 

phrase-pairs extracted from Model-2. The fea- 

ture functions which are highly correlated are 
regrouped close to each other via standard K- 

means. The result is shown in Figure 5 and the 

clusters are shown in Table 3. 

Feture Functions Correlations, Regrouped by Similarity via K-means 

wtaenreoanlea 

‘Scale Gives Value of F for Each Feature Function Pair 

Figure 5: Pair-wise correlations among 11 Fea- 

ture Functions. 

[Feature Func. FID Feature Func. FID ] 
E2FFScoreln 2 E2FIBMBracket 9 

E2FIBMScoreIN 7 AlignmentLinks ul 
F2EIBMScoreOut___6 
F2EFScoreIn 1 E2FIBMScoreOut 8 

F2EIBMScoreIN 5 F2EIBMBracket 10 

[_E2FFScoreOut 4 ] 
[[F2EFScoreOut 3 ] 

Table 3: Clustered Feature Functions with FID 

The more correlated the two feature functions 

are, the more overlapping information the two 

share with. In Figure 5, intuitively, features of 

FID 2,9,7,11,6 are grouped together with as- 
pects using the noisy channel model in English- 
to-Chinese direction and FID of 8,5,10,1 are 
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clustered together related to the Chinese-to- 

English direction. The feature functions for the 

outer brackets like F2EIBMScoreOut (FID 6) and 

E2FIBMScoreOut (FID 8) are somewhat mis- 

placed and the the fertility models for outside 

parts F2EFScoreOut and E2FFScoreOut are sin- 

gled out in the clustering process. These evi- 

dences illustrate that feature functions from the 

outer part of the block have little overlap with the 
feature functions from the inner part of the block. 

Two directions of the noisy channel model are 

weakly correlated. All these observations confirm 

our intuitions. 

6.3 Log-Linear Model 

We hold 627 sentence pairs with one reference 

each from the 2001 Dry-Run test as develop- 

ment dataset, which were word-aligned by bilin- 

gual speakers. From the word alignment, we can 

extract the gold-standard blocks (phrase pairs). 

On the same held-out 627 sentence pairs, we 

run our baseline models with up to Top-20 tar- 

get phrase candidates for each source phrase to 

collect the raw scores from all feature functions 

and we compute word-level F-measure for each 

extracted block. 

Datasets Size 

Word alignment Links | 14769 

Gold Blocks 30803 
Hypothesis Blocks 297,829 

Table 4: Development Dataset Statistics 

The final optimized weights learnt are (0.0480, 

0.0660, 0.0048, 0.0032, 0.1376, 0.1332, 0.1662, 
0.1113, 0.2495, 0.4621, 0.0753), in the order of 

the FIDs assigned in Table 3. Table 5 summarizes 

the log-linear model’s performances at different 

configurations. The best Bleu score for the log- 

linear model is 0.1834, an improvement over the 

best generative models’ performance of 0.1726. 

The log-linear model based on maximum en- 

tropy principle has several advantages over the 

generative models. It introduces less data frag- 

mentation, requiring fewer independence as- 

sumptions and exploiting a principled technique 
for automatic feature weighting. However, a 
drawback of our approach is we have to simu-



Model Settings | Nist [ Bleu ] 

Top! | 6.8069 | 0.1790 
a Top2 | 6.9517 | 0.1811 

Log-Linear Model | 753 | 6.9620 | 0.1834 
Top4 | 6.8632 | 0.1790 

Table 5: Log-Linear Model with 1/=11 Feature 

Functions for Phrase-Pair Extraction. 

late the phrase-pair extraction performance mea- 

sure from the hand-aligned data set to compute 
the word-level F-measure. This potentially intro- 

duces some errors before the optimizations. 

7 Conclusions and Discussions 

We presented a set of informative feature func- 

tions for bilingual phrase-pair extractions. A log- 

linear model is proposed to combine these feature 

functions and improvements are demonstrated in 

Chinese-English TIDES’03 small data track eval- 
uations. The log-linear model is a promising 

framework which has the advantage of leverag- 

ing the overlapping features and it has flexibilities 

of exploiting more informative feature functions. 

However, the optimization took long to converge 

and run random restarts were needed to avoid lo- 
cal optima. Different optimization criteria, effi- 
cient algorithms and better feature functions can 

potentially bring more improvements. 
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