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ABSTRACT

In this paper, we describe our efforts to develop acoustic mod-
els and decoding setups suitable for automatic speech recognition
using distant microphones. Our goal is to investigate, how the per-
formance of a system trained on a combination of close-talking and
distant microphone data can be optimized, while assuming as little
information about the configuration of (multiple) distant micro-
phones as possible, to avoid guesstimates and lengthy calibration
runs.

We evaluated our system in NIST’s RT-04S “Meeting” speech-
to-text evaluation, where speech data was recorded at several sites
with a varying number of different microphones, but not with gen-
uine microphone arrays. Body-mounted microphones provide base-
line numbers for distant ASR performance and allow for compar-
isons of meeting speech with other spontaneous speech data.

1. INTRODUCTION

An important effort in current speech research is focused on the
processing of speech from natural multi-party interaction, aka “Meet-
ings”, which presents a number of new challenges in terms of style
(highly interactive), segmentation (overlapping) as well as varying
recording condition(s). Data gathered during meetings provides an
interesting testbed for work on robust automatic speech recogni-
tion, speaker detection, segmentation and tracking, discourse mod-
eling, and many more. Ideally, automatic systems working on
these tasks operate on data recorded from distant microphones,
freeing users from the need to wear body-mounted microphones.
As microphone arrays will not be available in many real-world
cases, research should investigate speech recorded through room
microphones, which could for example be built into hands-free
telephone sets or other mobile units. Ad-hoc networks of these
devices could be rapidly assembled for the transcription of one
particular meeting and re-configured for the next meeting.

In this paper, we present the current Interactive Systems Lab’s
speech-to-text system for “Meeting”-type speech, which was eval-
uated in NIST’s RT-04S “Meeting” evaluation [1, 2, 3]. The focus
of this paper is on system design and experiments using (multiple)
distant microphones. For this case, we compare two approaches to
combining the information from several channels.

2. THE “MEETING” SCENARIO AND DATA

“Meeting” data used in this work mainly consists of group meet-
ings in a professional or research environment, where participants
were usually seated around a table. As the meetings occured natu-
rally, they contain spontaneous effects and sloppy speech, although

the amount varies among the four collection sites CMU, ICSI,
LDC, and NIST.

2.1. Training Data

Training data was available from three sites in 16kHz, 16bit qual-
ity, see table 1. The CMU data was recorded with lapel micro-
phones, while the other groups used head-sets. Although the lay-
out differed between sites, the distant microphones were generally
of table-top, omni-directional type roughly distributed along an
axis on the middle of the conference table. The NIST data con-
tains directional microphones as well

Corpus Duration # Meetings # Speakers # Dist. Mics

CMU 11h 21 93 0
ICSI 72h 75 455 4
NIST 13h 15 77 7

Table 1. Meeting training data: all data sets contain recordings of
individual speakers with personal microphones in addition to the
above number of distant microphone recordings.

Pointers to these corpora as well as descriptions of their prop-
erties are available on the RT-04S web-site [1], the data is available
through LDC. For training our recognizer, we merged these cor-
pora with 180h of Broadcast News data from the 1996 and 1997
training sets. For language modeling, we also added the transcrip-
tions for 360h of Switchboard data from phases I, II, “Cellphone”
and “C-Tran”.

2.2. Development and Test Data

Three evaluation conditions using different amounts of informa-
tion were defined for RT-04S meeting data:

MDM Multiple Distant Microphones (primary)

SDM Single Distant Microphone (optional)

IHM Individual Head-set Microphone (required contrast)

Development data for the RT-04S evaluation consisted of 10-
minute excerpts of eight meetings, two per site. Eight 11-minute
excerpts of different meetings (two per site) were used for evalu-
ation. Each meeting has between three and ten participants while
the number of distant channels varied between one (CMU) and ten
(some LDC meetings).

For the distant microphone conditions, crosstalk regions, roughly
three quarters of the data, are labeled in the reference transcrip-
tions and excluded from scoring. No attribution of word tokens



to speakers is required. The manual segmentation was derived
from these transcriptions and the resulting segments only contain
non-crosstalk regions. The SDM condition can be derived from
the MDM condition by disregarding all but one “central” distant
channel for every meeting. Using this channel however did not
necessarily result in the lowest possible single-channel word error
rate.

3. SYSTEM DESIGN

3.1. Automatic Segmentation and Clustering

Speaker segmentation and clustering consists of identifying who
spoke when in a long meeting conversation. Ideally, the process
will discover how many people are involved in the meeting, and
output clusters corresponding to an unique speaker each. This in-
formation is needed for speaker adaptation in multi-pass decoding
as well as higher-level processing. Our system uses a hierarchical,
agglomerative clustering algorithm [4], we use the same segmen-
tation for SDM and MDM conditions, based on a single channel
channel only.

3.2. Language Model Training

Language Model Overall CMU ICSI LDC NIST

SWB-3G 54.8 65.0 47.1 57.4 54.3
Meeting-3G 53.4 64.9 41.3 60.7 53.4
Merged-3G 52.4 63.7 42.6 55.9 53.4
3-fold Interpolated 51.6 63.7 41.5 55.8 51.4

Table 2. Language Model development: word error rate in percent
on “SDM” condition using baseline Switchboard acoustic models.

Language models are described in [2] and table 2. We trained
a standard 3-gram LM and a 5-gram LM with∼800 automatically
deduced classes on a mixture of the Switchboard and Meeting tran-
scriptions, as we considered these to be similar in style. We also
trained a 4-gram Broadcast News LM. All LMs were computed
over a vocabulary of∼47k words, which resulted in an OOV rate
of 0.6% on the development set. Distant speech decodings were
run with the merged 3-gram LM. Confusion Network generation/
combination passes use a context-dependent interpolation of all
three LMs, which was also directly used in the IHM decodings.
The perplexity on the development set of the 3-fold interpolated
LM was 112.

3.3. Acoustic Model Training

The 16kHz recognizers used in these experiments work use the
Janus recognizer and the Ibis single-pass decoder in a 42-dimensional
feature space based on MFCCs with CMS and CVN applied on a
per-utterance basis. We use a±7 frames context window before
applying separate LDA and global STC transforms [5]. No specific
noise-filtering has been employed for distant data.

Our first experiments were run with a 2k codebooks, 6k distri-
bution, 100k diagonal Gaussians system trained on BN96 training
data only. Initial word error rate on Meeting data (“SDM” condi-
tion, i.e. one, central channel only; manual segmentation) is 62.8%

with VTLN, using both model-space and feature-space MLLR we
reach 59.9%.

Experiments with the “Switchboard” recognizer were conducted
with a simplified, 3-pass version of ISL’s system described in [6],
which reaches a word error rate of 25.0% on the RT-03S “Switch-
board” test set. For the Meeting experiments, speech was down-
sampled and passed through a telephony filter. A first-pass de-
coding using completely unadapted models results in a word error
rate of 64.2%, a VTLN system adapted with both model-space and
feature-space MLLR reaches 56.4% word error rate.

Using cross-adaptation between the two systems, it was possi-
ble to reduce the error rate to 52.3%, using the Switchboard system
for the final pass.

As our Switchboard system had been trained on∼360h of tele-
phony speech only and the combination of BN and Meeting data
would yield∼300h of close-talking or BN speech plus about the
same amount of in-domain distant speech, we decided to re-train a
16 kHz system from scratch.

Training Pooled BN96/97 ICSI CMU NIST
Test (%WER) (180h) (75h) (11h) (13h)

CMU 72.3 71.9 70.6 71.9 74.0
ICSI 60.2 62.2 59.9 63.0 67.2
LDC 67.9 68.2 69.1 71.8 76.6
NIST 71.4 72.7 75.2 72.9 75.8
Overall 66.7 67.5 67.2 68.9 72.6

Table 3. Results of training a “SDM” system on the different data
sets: pooling BN and Meeting data improves robustness.

To see if merging the data was indeed a viable approach, we
trained simple systems of equal size on different portions of close-
talking data and tested these on the central channel of the distant
Meeting development test. Results are summarized in table 3. It is
interesting to note that the “CMU” system performs better on the
distant data than the “NIST” system with also little training data.
We attribute this effect to the use of lapel microphones, which cap-
ture more room acoustics.

Two extra iterations of Viterbi training of the “ICSI”-trained
system on all four high-quality channels of the ICSI distant mi-
crophone data resulted in a word error rate of 62.5%, an improve-
ment of 4.7% absolute. Employing feature space normalization
(constrained MLLR) [7] and VTLN during testing only reaches
58.6%. Alternatively we performed a combination of channel-
adaptive (CAT) and speaker-adaptive (SAT) training also using
constrained MLLR [8], by estimating a separate normalization ma-
trix for every speaker and every recording channel. This resulted
in a word error rate of 54.5%, which is a 8.0% absolute (13% rel-
ative) gain. Performing SAT alone on the close-talking data did
not significantly decrease word error rate. Estimating the adapta-
tion parameters of the SAT/CAT system on the previously best hy-
potheses (52.3% of the SWB system) yields an error rate of 51.4%
with roughly a third of the parameters.

As a next step, we re-trained the context decision tree on the
combined data sets, increased the model complexity to 6k code-
books, 24k distributions,∼300k Gaussians assigned by Merge-
and-Split training while also re-training STC. Re-running the close-
talking and distant speech training with the large system on all data
sets reduced the error rate by an extra 3.5% absolute.



The experiments reported so far were run and scored on a pre-
release of the official RT-04S development data set, which could
not accomodate the Multiple Distant Microphone (MDM) condi-
tion. Due to changes to both transcripts and data, absolute error
rate cannot be compared before and after this point; quantitative
assessments of different methods’ merits however are unaffected
and valid.

4. RESULTS

4.1. Individual Microphones

For comparison, we also report results for our close-talking sys-
tem. For the IPM condition, we used Switchboard acoustic mod-
els together with close-talking Meeting models in an interleaved
adaptation scheme. Starting at a word error rate of 39.6% (43.6%
for automatic segmentation), adaptation reduces WER to 28.0%
(35.3%). Confusion Networks [9] were generated on the union of
lattices computed in different adaptation passes to further reduce
WER to 28.0% (32.7%) [2] (“Confusion Network Combination”,
CNC).

4.2. Single Distant Microphone

Experimentation with adaptation and decoding with the above setup
led to the following decoding strategy, where second- and third-
pass models were adapted with model-space and feature-space MLLR
using the hypothesis generated in the preceeding step. A single de-
coding pass takes less then 5 RTF on a 3GHz Pentium4 machine,
memory consumption is typically 250Mb when ignoring the foot-
print of cached audio data.

PLAIN Merge-and-Split training followed by Viterbi (2i) on
the close-talking data only, no VTLN

SAT/CAT-noVTLN ≡ PLAIN with extra SAT/ CAT Viterbi (4i) training
on the distant data, no VTLN

SAT/CAT ≡ SAT/CAT-noVTLN, but trained with VTLN

CNC Confusion Network Combination

Models Segmentation
(% WER) Manual Automatic

PLAIN 59.5 60.8
SAT/CAT-noVTLN 53.2 55.2
SAT/CAT 48.9 53.1
CNC 47.8 51.5

Table 4. Decoding results on the RT-04S development set, SDM
condition, CNC is between the last two passes.

Confusion Networks were generated from the union of differ-
ent lattices, where confidences were computed separately on the
individual lattices after pruning. Here, we are combining lattices
from the last two decoding passes.

To reduce the effects of the noise on distant channels, we con-
ducted experiments with Wiener filtering for noise reduction as in
[3]. We observed improvements only for particular combinations
of channel and acoustic model, but not for the overall system, par-
ticularly when the acoustic models were trained on distant data.

4.3. Multiple Distant Microphone (MDM) Condition

The decoding and adaptation strategy for the MDM condition used
the same models and the same decoding setup as the SDM case. To
combine the information from several channels, two approaches,
Confusion Network Combination and Array Processing, were tried.

4.3.1. Confusion Network Combination

CNC was performed over all channels processed in the adapted
steps, the results are summarized in table 5. Note the poor perfor-
mance of VTLN models in the automatic segmentation case.

Models Segmentation
Manual Automatic

PLAIN 53.4 (59.8) 54.4 (60.8)
SAT/CAT-noVTLN 46.6 (50.7) 48.5 (51.9)
SAT/CAT.8+10ms 43.3 (47.7) 45.5 (51.5)
CNC 42.8 45.0

Table 5. Decoding results (%WER) on the RT-04S development
set, MDM condition; the number in brackets is the performance of
a single channel without CNC.

Computing and combining Confusion Networks at the initial
60% word error rate immediately reduces word error rate by more
than 10% relative over the whole data set, which includes 25%
data with only one channel (CMU). The possibility to adapt on
this hypothesis leads to a gain of approximately 1.5% absolute in
single-channel word error rate for the SAT/CAT pass. The gain
is more pronounced for the automatic segmentation case. If we
apply CNC to lattices from the final pass only, the word error rate
is 0.3% higher on average.

4.3.2. Array Processing

To reduce the computational load incurred by decoding every dis-
tant channel separately and combining the output at the word level
only, we also investigated array processing of the input waveforms
to improve the quality of the audio signal. Every site however
recorded data differently and none used a proper microphone ar-
ray, instead, meetings were recorded with several table-top micro-
phones and (directed) room microphones. In our experiments, no
information whatsoever on microphone location and characteris-
tics was given or “guesstimated” from the data.

Segmentation Manual Automatic
Pass PLAIN SAT/CAT PLAIN SAT/CAT

ICSI (4 ch.) 32.8 26.2 33.9 29.3
LDC (≤ 8 ch.) 60.6 53.7 62.5 54.1
NIST (≤ 7 ch.) 52.1 46.3 53.5 51.8
Total (incl. CMU) 50.0 44.4 52.0 47.1

Table 6. Word error rates (in %) with array processing. CMU only
has one channel, LDC and NIST use a variable number of channels
(RT-04S development set).

For array processing, we performed delay-and-sum beamform-
ing on the available channels. The delays were estimated using



cross-correlation between channels. To reduce the effect of cor-
related noise and room reverberation, we applied Gnn subtraction
[10] during the delay estimation step. Due to the large dynamic
range of the input signal, we however generated the background
model to be subtracted from the correlation spectrum not on si-
lence, but as a smoothed function of itself (-1.1% abs.). Also, as
the microphones in the LDC and NIST part of the data exhibited a
large variability, the combination includes only those channels that
improved the predicted signal-to-noise ratio of the output signal
(-1.0% on subset). The models we used for decoding the beam-
formed audio were the same as for the CNC experiments as adap-
tation was performed on individual channels, not the beam-formed
signal, as described in [3].

4.4. Summary

Array Processing lends itself to building fast systems. For the sys-
tem using automatic segmentation on the development data, it re-
duces WER to 52.0% in the initial pass, while confusion network
combination only delivers 54.4%. For the adapted passes however,
confusion network combination works better (45.0% vs 47.1%),
particularly as it can still include information from earlier passes.
To set a lower bound on the single-channel word error rate, we
conducted a cheating experiment in which we selected ex-post the
best channel for each speaker. This resulted in a WER of 54.8%
for the unadapted models/ automatic segmentation case, i.e. both
methods perform better then an oracle deciding which single mi-
crophone to use for a particular speaker.

%WER SDM MDM/CNC MDM/AP
Segm.: Man. Auto. Man. Auto. Man. Auto.

CMU 59.8 63.4 60.7 62.9 60.7 62.9
ICSI 32.5 36.5 27.5 30.1 26.2 29.3
LDC 52.9 56.3 48.1 48.9 53.7 54.1
NIST 57.0 60.7 44.5 47.9 46.3 51.8
Overall 47.8 51.5 42.8 45.0 44.4 47.1

Table 7. WER for RT-04S development data broken down to
sites: CMU is most difficult in all conditions sue to its sponta-
neous speech and the availability of one distant channel only. ICSI
data is relatively “easy”.

To further improve system performance for the distant micro-
phone case, we tried adapting our recognizer to whole meetings
(generally longer than 60 minutes) instead of only the evaluation
part. Presumably due to the quality of the automatic segmenta-
tion, this did not lead to a gain in performance. Unfortunately, the
whole meetings have not yet been manually segmented.

5. CONCLUSION

ISL’s primary “sttul” submissions to the NIST’s RT-04S “Meet-
ing” evaluation as presented in this paper gave excellent results
and reached a word error rates of 35.7%, 49.8%, and 44.9% for
the IHM, SDM, and MDM conditions respectively on the evalua-
tion set.

For channel combination in distant speech recognition, we
compared Confusion Network Combination with Array Process-
ing. The results indicate that fast, single pass systems should use

Array Processing, while for multi-pass systems Confusion Net-
work Combination is a robust alternative requiring no information
about number and position of microphones etc.

We are already using an improved version of the “SDM” SAT/CATno-
VTLN system for realtime speaker-independent topic spotting around
an “augmented table”. As keywords appear frequently and repeat-
edly in this application, cross-talk is not such a significant prob-
lem here. Distant speech “Meeting” recognition, and the problems
it poses in the areas of segmentation and clustering, robust pre-
processing, acoustic modeling, and channel combination, as well
as language modeling and natural language processing however
remains a challenging task for future research.
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