
Rapid Porting of ASR-Systems to Mobile Devices

Thilo W. Köhler, Christian Fügen, Sebastian Stüker, and Alex Waibel

Institut für Logik, Komplexität und Deduktionssysteme
Universität Karlsruhe (TH), Karlsruhe, Germany
{tkoehler,fuegen,stueker,waibel}@ira.uka.de

Abstract
Portable devices for the consumer market are becoming avail-
able in large quantities. Because of their design and use, human
speech often is the input modality of choice, for example for car
navigation systems or portable speech-to-speech translation de-
vices. In this paper we describe our work in porting our existing
desktop PC based speech recognition system to an off-the-shelf
PDA running WindowsCE3.0. We do this in a way that our
already well performing language and acoustic models can be
taken over without the need of retraining them for the PDA. In
order to achieve an acceptable run-time behavior we apply sev-
eral optimization techniques to the preprocessing and decoding
process. Among other things we introduce the newly developed
early feature vector reduction. In that way the execution time of
our recognition system can be reduced from initially 28x real-
time to 2.6x real-time with a tolerable increase in word error
rate. The size of the acoustic models is reduced to 25% of its
original size.

1. Introduction
Over the last couple of years mobile electronic devices have
become available for the consumer market in large quantities.
Nowadays portable GPS based navigation units, cell phones,
personal digital assistants (PDAs), and electronic translation de-
vices are common appliances in every day life. These devices
are often being used in situations where their control by means
of manual input, e.g. through a keyboard or pen, is difficult or
impossible, for example when driving a car. In such situations
human speech very often is a suitable input modality. Also, hu-
man speech often makes for a more natural input mode. A PDA
running a translation program that takes human speech as input
and gives its translation output also in the form of human speech
will be much more convenient to the user than one that requires
keyboard or pen input.

Though the computational power of small devices, such as
PDAs, has increased significantly, it is still no match for the ca-
pabilities of today’s desktop machines. State-of-the-art large
vocabulary conversational or spontaneous speech recognition
systems that offer good performance in acceptable run-time still
require the computational power and memory resources of full
grown desktop machines. Porting them to mobile devices there-
for makes changes to their system design necessary.

In [1] Viikki gives an overview on the topic of automatic
speech recognition (ASR) on mobile devices. Though it is often
possible to transmit the audio signal from the PDA to a server
for recognition, in the light of increased computational power
of mobile devices and the gained independence from a server
connection, it is desirable to have the recognition process per-
formed by the mobile device directly. Since the decoding, espe-
cially the score computation of the acoustic model, is the most

expensive part during the recognition process, many speed and
memory optimizations target the computation of the Gaussian
Mixtures, for example the Bucket Box Intersection Algorithm
[2]. As Novak mentions in [3], the memory bandwidth is also
a speed limiting factor. State-Clustered Tied-Mixture (SCTM)
HMMs [4] can reduce the size of the acoustic model while
accelerating its computation, but requires specifically trained
models. For faster computation of Mahalanobis distances, Vasi-
lache suggests to use look-up tables [5]. [6] uses integer com-
putation for decoding and preprocessing instead.

In this work we present our approach in porting the Janus
Recognition Toolkit (JRTk) [7] featuring the IBIS decoder [8]
to an off-the-shelf PDA running WindowsCE 3.0. We do this in
such a way that we do not need to train new models, but rather
can take the models of an already existing and well perform-
ing system. One of the most prominent limitations of todays
hand-held devices is the lack of a floating point unit (FPU), due
to limitations in battery supply and price of the PDA. By de-
fault, floating point operations are being emulated by software.
Since in an ASR system floating point operations occur very fre-
quently during preprocessing and decoding, and because their
default software emulation is very time intensive, one of the
major tasks is to either reduce their frequency in the PDA sys-
tem or to replace them by integer operations. Another limiting
factor is the small bandwidth of the memory access. During
decoding the CPU has to process data with bad locality charac-
teristics. At the same time the data cache of mobile devices is
very small, usually ranging from 8KB up to 32KB. One way to
alleviate this problem is to compress the models and data of the
recognition system by quantizing them.

Chapter 2 introduces our recognition system that we ported
to the PDA and the performance of the naive port without any
modifications to the recognition process. In chapter 3 we de-
scribe our experiments in improving the execution time of the
preprocessing, while chapter 4 describes the modifications to
the decoder. Finally in chapter 5 we demonstrate how the indi-
vidual modifications can be combined in order to achieve a good
trade-off between execution time and recognition accuracy.

2. Baseline System Description

2.1. Task and Test Data

In our work we ported a recognition system for spontaneous
requests and commands to a navigation system for the city of
Karlsruhe, Germany [9]. Beside the development data of about
20 minutes from 11 speakers, another 52 minutes of German
speech were collected from 4 female and 9 male native speakers
for evaluation. Recordings were made with a sampling rate of
16kHz and a 16bit resolution with the integrated microphone
of the PDA using a push-to-talk mechanism. We used an iPAQ

10
.2

14
37

/I
nt

er
sp

ee
ch

.2
00

5-
11

6



H5550 Pocket PC with an Intel XScale 400MHz processor for
our experiments.

2.2. Recognition System

Our originally desktop based system is a three-state sub-
phonetically tied semi-continuous recognizer composed of
2000 distributions with as many codebooks with 16 Gaussians
each that take 32 dimensional Mel Frequency Cepstral Coeffi-
cients (MFCC) after linear discriminant analysis (LDA) as in-
put. The language model is a semantic, context free grammar
with about 300 rules. The search vocabulary contains 2500
words, of which 2000 are names of streets, city areas, and places
of interest. Utterance based mean subtraction is applied during
decoding. When porting the system to a PDA without applying
any optimization, it runs in 28 times real time and gives a word
error rate (WER) of 19.7% on the evaluation data.

3. Optimization of Preprocessing
Figure 1 shows the preprocessing of the baseline system which
runs in about 0.7 times real time. When aiming for a recog-
nizer running in real time this is too slow. In Figure 1 every
preprocessing step is labeled with the time it took in average for
processing 1s of audio signal. The optimizations we describe
below will focus on processing steps marked by boxes with a
solid outline in the figure.

Audio Signal

FFT Mel Log DCT

379ms 41ms 67ms 42ms 29ms 21ms 134ms

Mean
Sub

Context LDA ...

Σ  713ms

Figure 1: Preprocessing steps and run-time for 1s of audio. Op-
timization will focus on boxes with solid outlines.

3.1. Integer Matrix Multiplication

The matrix multiplication A(mA×n) ∗B(n×mB) = C(mA×mB)

needs O(n3) multiplications and additions. Optimizations such
as the method of Strassen that assume that additions are cheaper
than multiplications but do not reduce model complexity, are of
little use, as software emulated floating point additions are not
significantly cheaper than multiplications. We perform matrix
multiplications with the naive implementation, however using
integer operations, by converting the matrices into integer val-
ues, then perform the matrix multiplication and convert the re-
sult back to floats. When using converted integer values, the
accuracy of the computation is lower and heavily dependent on
the value range of the matrices A and B.

In order to make good use of the integer value range while
avoiding integer overflows at the same time, the coefficients of
both matrices must be scaled by sA and sB before they are con-
verted to integers, scaling back the result accordingly. This scal-
ing needs O(n2) floating point multiplications. Let �...� denote
the error of typecasting from floating points to integer values.
Then we approximate C as:

C ≈ 1

sAsB
(�sAA� ∗ �sBB�) (1)

A conservative estimation of sA and sB that avoids integer
overflows is to find the maximum coefficients â and b̂ and to
choose the scaling factors in a way that sAâ · sB b̂ ≤ INTmax

n
.

However, considering that the maximum coefficients of the ma-
trices do not necessary meet each other during multiplication,
the scaling factors can be better approximated by:

sA =

�
INTmax�n

k=1 maxi aik maxj bkj
· b̂
â

(2)

sB =

�
INTmax�n

k=1 maxi aik maxj bkj
· â
b̂

(3)

In order to avoid the calculation of sA and sB for every
new matrix multiplication, the scalers are estimated only once
on similar data beforehand. Since working in two’s comple-
ment space, the individual series of additions can overflow dur-
ing computation as long as the final result still fits within the
integer value range.

In our system the integer matrix multiplication is used for
the DCT and the LDA steps of the preprocessing. Table 1 shows
that the recognition performance of the recognizer does not de-
grade while the execution time of the matrix multiplication de-
creases significantly. The achieved acceleration depends on the
size of the matrices, as the overhead for converting the matrices
to integer values is O(n2) while the matrix multiplication takes
O(n3).

Matrix Multiplication DCT LDA WER

Baseline 42ms 134ms 19.7%
Integer Mat. Mul. 5ms 10ms 19.7%

Table 1: Speed and WER of the matrix multiplication.

3.2. Approximation of Logarithm

The evaluation of the log function usually requires many float-
ing point operations. The emulation by software of these op-
erations is especially expensive, since higher numeric accuracy
than provided by integers is needed. To obtain a fast approxi-
mation of the log function consider the internal representation
of a floating point number according to the IEEE-754 standard:

f = s ·m · 2x (4)

where s is the sign, m the mantissa normalized to [1, 2)
and x the exponent. The exponent can be extracted by simple
bit masking and shifting and already represents a coarse approx-
imation of log2 f . It can be turned into logb f to any base b by
multiplication with logb 2 as shown in equation (5). The error
is always lower than logb 2, but can be improved by addition-
ally approximating the logarithm of the mantissa m. By using a
polynomial of first (6) or second (7) degree the computation is
reduced to a few multiplications and additions:

logb f ≈ logb 2 · x (5)

logb f ≈ logb 2 · (m− 1 + x) (6)

logb f ≈ logb 2 ·
�
1

3
(m− 1)(5−m) + x

�
(7)

Table 2 shows the word accuracy of our baseline system
when replacing the logarithm with approximation (7). We de-
cided to use this approximation for our experiments, because it
has the best numerical accuracy, already has a negligible run-
time and gave a slightly better recognition performance on the
development data.



Log calculation Speed WER

Baseline 67ms 19.7%
2nd degree polynomial 9ms 19.8%

Table 2: Speed and WER of the logarithm approximation.

3.3. FFT Using Intel Performance Primitives

For speeding up the FFT computation in our system, we used
the Intel Performance Primitives (IPP)[10], a function library
optimized for different types of Intel processors. In the IPP the
FFT is performed on 16bit integer values as input and 16bit in-
tegers as output. However, the accuracy of the implementation
seems to be very low. The best accuracy was observed by nor-
malizing the input signal to 2% of the 16bit value range. One
explanation for this could be, that exceedingly high values cause
integer overflows during the calculation. Because of the lower
accuracy of the FFT the word error rate increases slightly as
shown in Table 3; but at the same time the execution time is
sped up significantly.

FFT Speed WER

Baseline 379ms 19.7%
IPP 25ms 21.6%

Table 3: Speed and WER of the FFT.

4. Optimization of Decoding
Decoding the feature vectors to a textual hypothesis is the
most expensive part in ASR. Especially the evaluation of the
Gaussian Mixtures uses a lot of floating point operations for
computing the Mahalanobis distances. The use of look-up ta-
bles can avoid these computations [5] either in part or com-
pletely. But on a PDA the necessary additional memory ac-
cess is more expensive than doing the computation by means
of integer arithmetic. Figure 2 shows the execution time of the
decoding for the direct system port without any PDA specific
optimizations.

Audio Signal

Preprocessing
Distances

0.7s

Search

Decoder

Text Hypo
"Where am I?"

Σ 28.0s

27.3s

24.0s 3.2s

Figure 2: Preprocessing and decoding run-time for 1s of audio.

4.1. Mahalanobis Distances Using Integer Computation

Computing the Mahalanobis distances is one of the most ex-
pensive parts during decoding using many floating point opera-
tions. In order to apply integer operations instead the codebook
is converted into an integer representation. Similar to the ma-
trix multiplication, scalers for the means and the covariances
are used to better cover the integer value range. Since the range
of the values encountered during the calculation can be robustly
estimated beforehand, the scalers can also be precomputed. A
better accuracy for the majority of the values can be reached by

using a higher scaling factor, that leads to clipping of only few
numbers with high absolute values. We tuned the scalers on
the development data. The best trade-off on 16bit values was
reached, when less than 10% of the covariances and nearly no
mean values were clipped. The 16bit values of means and co-
variances can be stored interleaved in order to be fetched by one
single 32bit memory access. In combination with rolling out the
innermost loop of the distance calculation, this leads to a gain
in speed of 10-25% relative.

Quantisation Distances Search Memory WER

Baseline 24.0s 3.2s 19MB 19.7%
16bit 2.0s 3.2s 15MB 19.9%
8bit 1.8s 3.1s 13MB 19.5%

Table 4: Speed, memory and WER comparison of 8 and 16bit
quantized codebooks using the integer score function.

It can be seen in Table 4, that no significant increase in
WER is caused by using the integer score function and a 16bit
or 8bit representation of the codebooks. But the speed can be
improved by a factor of more than 10 times. If the codebook is
not quantized on the fly, but precomputed and stored as integer
values, the size of the acoustic model can be reduced down to
50% (16bit) or 25% (8bit). The overall memory footprint of the
recognizer changes accordingly.

Quantizing the codebooks to 8bit instead of 16bit increases
the recognition speed further. Now 2 means and 2 covariances
can be fetched with one 32bit memory access, leading to a
speed-up of ∼10% and a memory reduction of 50% compared
to the 16bit quantization (see Table 4).

4.2. Early Feature Vector Reduction (EFVR)

The idea behind the EFVR is to reduce the number of feature
vectors, before decoding. Similar approaches like the Variable
Frame Rate Algorithm [11] or the Conditional Frame Skipping
[12] are picking out frames that carry potentially new informa-
tion while skipping similar frames. In contrast to that we do not
skip frames, but merge them by taking their arithmetic mean. To
compare neighbored feature vectors, we use a modified Euclid-
ean distance in which lower coefficients are weighted higher.
This is motivated by the fact that the coefficients in the feature
vector where arranged by the LDA according to their discrimi-
native capabilities.

0 20 18040 60 80 100 120 140 160

Where am I ?

+pop+
+pop+

+smack+

Feature Vectors

Figure 3: EFVR on the utterance ”Where am I ?”: It can be seen
that the 180 feature vectors are reduced to ∼60 vectors, mainly
in silence or stationary areas.

Typically, passages of silence are merged together, but also
longer vowels or other static sounds, as it can be seen in Figure



3. Also, the spreading factor of the search network is locally
lower depending on the number of vectors that are merged be-
cause the confidence about the merged vector is expected to be
higher. Generally, the number of active states can be reduced
down to 20-50%, but heavily depends on the characteristics of
the input audio data. Tighter segmentation or more reverbration
lower amount of merged vecotrs.

Combination Distances Search WER

Baseline 24.0s 3.2s 19.7%
EFVR 21.2s 2.8s 20.2%

Table 5: Speed, memory and WER comparison of the EFVR.

Table 5 shows the effect the EFVR has on the execution
time of our recognition system.

4.3. Bucket Box Intersection (BBI)

A further speed-up technique based on Gaussian selection used
in our decoder is BBI [2]. Using a BBI-Tree with a depth of
6 a good improvement in speed can be achieved. However the
WER increases by ∼7.6% relative, as shown in Table 6. It has
also a significant memory overhead.

Distances Search Memory WER

Baseline 24.0s 3.2s 19MB 19.7%
BBI 8.1s 3.1s 21MB 21.2%

Table 6: Speed, memory and WER comparison when using a
BBI-Tree.

5. Combination of the Optimizations
In the previous two chapters every optimization was tested in-
dependently from the others for a better comparison of the sev-
eral techniques. In this chapter we show the improvements in
decoding speed and memory usage when combining the various
techniques. From observations of the performance on the devel-
opment data, we chose different combinations of optimizations,
trying to find a good trade-off between speed and WER.

Combination Preproc. Dist. Search RTF WER

Baseline 0.7s 24.0s 3.2s 28.0 19.7%

Pre 0.1s 24.0s 3.2s 27.4 20.2%
8bit+Pre 0.1s 1.8s 3.2s 5.2 20.2%
EFVR+8bit+Pre 0.1s 1.7s 3.0s 4.9 21.8%
+BBI 0.1s 0.7s 2.5s 3.4 22.1%
+Beam 0.1s 1.3s 2.0s 3.4 21.1%
+BBI+Beam 0.1s 0.6s 1.8s 2.6 23.0%

Table 7: Results in combining different optimizations.

Table 7 shows, that the biggest part of the acceleration is
achieved by quantizing the codebooks to 8bit values, with an
increase in WER of 2.5% only, mainly due to the coarse calcu-
lations of the FFT during preprocessing. Further acceleration
can be achieved while increasing the WER more significantly.
The last two experiments use a smaller beam size for the search.

6. Conclusions
In this paper we describe the steps taken to port a spontaneous
speech recognition system running on desktop computers to

PDAs without the need of training new models. In order to
achieve an acceptable run-time behavior and memory consump-
tion we implemented various optimization techniques. Those
techniques focus on accelerating the preprocessing, search, and
acoustic model evaluation by replacing floating point calcula-
tions with either approximations or integer arithmetic, by quan-
tizing the models on the fly, and by reducing the amount of data
that needs to be decoded by introducing EFVR as a new feature
vector reduction technique. On the evaluation data the EFVR
did not work as well as expected, because the audio record-
ings contain reverberation and environmental noise, that makes
it more difficult to find static areas in the recording to merge.
This issue will be addressed in further experiments, by combin-
ing the EFVR with speech detection. By introducing these mea-
sures we managed to reduce the execution time of our recogni-
tion system on the PDA from 28x real-time to 5x real-time while
the word error rate of the recognizer increased by 2.5% relative
only. When reducing the execution time down to 2.6x real-time,
we get a 17% relative increase of word error rate.

7. Acknowledgements
This work has been funded in part by the European Union
under the integrated project TC-Star - Technology and Cor-
pora for Speech to Speech Translation - (IST-2002-FP6-506738,
http://www.tc-star.org).

8. References
[1] O. Viikki, “ASR in portable wireless devices,” in ASRU,

2001.

[2] J. Fritsch and I. Rogina, “The bucket box intersection
(BBI) algorithm for fast approximative evaluation of di-
agonal mixture gaussians,” in ICASSP, 1996.

[3] M. Novak, “Towards large vocabulary ASR on embedded
platforms,” in ICSLP, 2004.

[4] J. Park and H. Ko, “Compact acoustic model for embed-
ded implementation,” in ICSLP, 2004.

[5] M. Vasilache, J. Iso-Sipilä, and O. Viikki, “On a practical
design of a low complexity speech recognition engine,” in
ICASSP, 2004, pp. 113–116.

[6] B. Zhou, Y. Gao, J. Sorensen, D. Dchelotte, and
M. Picheny, “A hand-held speech-to-speech translation
system,” in ASRU, vol. 1, 2003, pp. 664–669.

[7] M. Finke, P. Geutner, H. Hild, T. Kemp, K. Ries, and
M. Westphal, “The Karlsruhe-Verbmobil speech recogni-
tion engine,” in ICASSP, vol. 1, 1997, pp. 83–86.

[8] H. Soltau, F. Metze, C. Fügen, and A. Waibel, “A one
pass-decoder based on polymorphic linguistic context as-
signment,” in ASRU, 2001.

[9] C. Fügen, M. Westphal, M. Schneider, T. Schultz, and
A. Waibel, “Lingwear: A mobile tourist information sys-
tem,” in HLT, 2001.

[10] “Intel Performance Primitives.” [Online]. Available:
http://developer.intel.com/software/products/perflib/

[11] Q. Zhu and A. Alwan, “On the use of variable frame rate
analysis in speech recognition,” in ICASSP, 2000.

[12] M. Woszczyna, “Fast speaker independent large vocab-
ulary continuous speech recognition,” Ph.D. dissertation,
University of Karlsruhe, Germany, 1998.


