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ABSTRACT 
To overcome the limitations of current technologies for remote 
collaboration, we propose a system that changes a video feed 
based on task properties, people’s actions, and message 
properties. First, we examined how participants manage different 
visual resources in a laboratory experiment using a collaborative 
task in which one partner (the helper) instructs another (the 
worker) how to assemble online puzzles. We analyzed helpers’ 
eye gaze as a function of the aforementioned parameters. Helpers 
gazed at the set of alternative pieces more frequently when it was 
harder for workers to differentiate these pieces, and less 
frequently over repeated trials. The results further suggest that a 
helper’s desired focus of attention can be predicted based on task 
properties, his/her partner’s actions, and message properties. We 
propose a conditional Markov model classifier to explore the 
feasibility of predicting gaze based on these properties. The 
accuracy of the model ranged from 65.40% for puzzles with easy-
to-name pieces to 74.25% for puzzles with more difficult to name 
pieces. The results suggest that we can use our model to 
automatically manipulate video feeds to show what helpers want 
to see when they want to see it. 

Categories and Subject Descriptors 
H5.3. Information interfaces and presentation (e.g., HCI): Group 
and organizational interfaces – collaborative computing, 
computer-supported collaborative work 

General Terms 
Algorithms, Experimentation, Human Factors 

Keywords 
Remote Collaborative Tasks, Eye Tracking, Focus of Attention, 
Keyword Spotting, Computer-Supported Cooperative Work 

1. INTRODUCTION 
Imagine that an engineer in the United States needs to instruct a 

technician in India on how to service a faulty machine. They are 
forced by circumstances to collaborate over geographical distance. 
The participants in this collaborative task must work on physical 
objects. Their participation can be differentiated into a helper role 
(the person offering the knowledge to guide the operations) and a 
worker role (the person who actually performs the physical 
actions). Given the dynamic nature of collaborative tasks, helpers 
and workers must coordinate their interaction, so that assistance is 
provided in a timely manner.  

Video systems have emerged to help bridge the distance between 
remote collaborators on physical tasks by providing them a shared 
visual space [15] for conversational grounding ([4], [6]). We are 
interested in how a better understanding of task dynamics can 
improve existing video systems. 

Video systems that provide the helper with some view of the 
worker’s environment have shown to help improve task 
performance, compared to audio-only systems ([8], [9], [11], 
[15]). However, these systems are handicapped by the reality of 
expensive bandwidth consumption and by the limited view angle 
and mobility of the camera. These systems, at best, can provide 
only a subset of the visual information available in side-by-side 
conditions. Some systems have attempted to address these issues 
by having a pan/tilt/zoom camera remotely controlled by the 
helper ([17], [18]); however, the task of manipulating the camera 
interferes with smooth interpersonal communication [21]. Other 
systems offering multiple views simultaneously are bandwidth 
intensive, and have not been proven to be beneficial [9]. Systems 
that allow switching between multiple views (e.g., [10]) 
circumvent bandwidth limitations, but incur high equipment costs 
and hinder common understandings of what view of the 
environment is being shared. 

We hypothesize that if we can show the remote helper the desired 
view of the worker’s environment in any specific instance of the 
task automatically, it will free the helper from having to control 
the camera. At the same time, the helper will have the necessary 
visual information to communicate effectively and assist the 
worker in the collaborative task.  Before we can design a system 
that shows the right view at the right time, however, we need a 
better understanding of how properties such as the nature of the 
physical task, partners’ actions, and speech characteristics affect 
helpers’ visual attention. 

To examine this issue, we created a real-time collaborative online 
task in which a remote helper instructs a worker on how to build a 
puzzle. We first investigated whether the helper’s focus of 
attention towards the different visual resources showed 
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regularities by analyzing the effects of task properties, partner 
actions, and message content on the helper’s gaze. The results, 
obtained from previous work [23], suggest that the most beneficial 
view of the workspace can be predicted based on these 
parameters. In the current study, we build on previous findings by 
creating and training a classifier that attempts to predict a helper’s 
desired focus of attention. Following the development phase, we 
evaluated the classifier’s performance. The results demonstrate 
the feasibility of creating intelligent camera systems based on task 
properties, partner actions, and message content.  

In the remainder of the paper, we first discuss relevant previous 
work. Then, we describe the experiment in detail. Next, we 
present the experimental results, our proposed gaze prediction 
algorithm, and its subsequent evaluation. We conclude with a 
discussion of some remaining issues and our plans for future work.  

2. RELATED WORK 
The successful performance of collaborative physical tasks 
requires tight coordination of conversation and action. People plan 
their utterances by monitoring others' activities and changes in 
task status to determine what steps should be taken next. Video 
conferencing tools that provide remote helpers with views of a 
workspace lead to more efficient task performance than audio-
only communications tools (e.g., [9][22]). However, performance 
with video systems rarely equals that of face-to-face interaction.  
This may be because video cameras may not show the right part 
of a workspace at the right degree of resolution at the right time.  

Clark’s theory of conversational grounding (e.g., [4] [5]) suggests 
that helpers will look at targets that help them determine whether 
or not their messages have been understood as intended. Other 
research has indicated that gaze patterns of speakers and listeners 
are closely linked to the words spoken, and help in the timing and 
synchronization of utterances (e.g., [1]). Vertegaal et al. found 
that in multi-party conversations, speakers looked at the person 
they were talking to 77% of the time and listeners looked at the 
speaker 88% of the time. They also built a multi-agent 
conversational system that uses eye gaze input to determine to 
which agent the user is listening or speaking [28]. Stiefelhagen et 
al. developed a system to estimate participants’ focus of attention 
from gaze directions and sound sources. They demonstrated that 
acoustic information provides 8% relative error reduction 
compared to only using one modality [27]. 

Recent studies demonstrate that people naturally look at objects or 
devices with which they are interacting. Campana et al. describe a 
system that uses eye movements to determine what a speaker is 
referring to [3]. Maglio et al. investigated how people use speech 
and gaze when interacting with an “office of the future,” in which 
they could interact with office applications (e.g. Calendar, Map 
and Address Book) via speech recognition, and found that people 
nearly always looked at a device before making a request to it [19]. 
Similaly, Brumitt et al. [2] investigated speech, gesture, touch, 
and other nontraditional interfaces to control lights in their “Easy 
Living Lab”, a mock up of a small living room. They reported that 
people typically looked at the lights they wanted to control.  

Eye gaze has been used as an important modality for building new 
human computer interfaces. Earlier work includes eye-controlled 
interfaces for the disabled [12], and eye gaze word processors [7]. 
In those interfaces, users can either make use of intentional or 
natural eye movements. Sibert and Jacob compared eye gaze with 

mouse input [25]. They found that eye-gaze selecting technology 
was faster than selecting with a mouse. Stiefelhagen and Yang 
illustrated a multimodal interface using eye gaze and speech to 
drive a panoramic image viewer [26].  

A major problem of gaze-based interfaces is the difficulty in 
interpreting eye movement patterns due to unconscious eye 
movements such as saccades and to gaze tracking failure. Jacob 
[13] approached the problem by predicting a series of fixations 
separated by saccades and fitting the raw data to this model. 
Salvucci used hidden Markov models to interpret gaze data and 
reported good interpretation results in an eye typing study [24].  

Oh et. al built a gaze-aware interface, “Look-To-Talk,” (LTT) that 
could direct the speech to a software agent in a multi-user 
collaborative environment [20]. They compared LTT to “Talk-To-
Talk” (TTT), a spoken keyword-driven paradigm, and “Push-To-
Talk” (PTT), a keyboard-driven paradigm. They concluded that 
LTT is a promising interface. In this research, we are interested in 
the relationship between spoken utterances and gaze. Our goal is 
to predict focus of attention from keywords extracted from the 
dialogue during a collative physical task, i.e., Talk-to-Look. 

3. METHOD 
3.1 Design 
Our experiment used an online jigsaw puzzle task adapted from 
Kraut and colleagues [16], in which a helper and worker 
collaborated to construct a series of puzzles. The helper could 
gaze freely among three areas to obtain visual information as he 
or she provided instructions: 

• The pieces bay, in which the puzzle pieces were stored.  By 
monitoring the pieces bay, the helper could assess whether the 
worker had selected the correct piece from among the 
alternatives. 

• The workspace, in which the worker was constructing the 
puzzle. By monitoring the workspace, the helper could assess 
whether the worker had positioned a piece correctly. 

• The target solution, which showed how the puzzle should be 
constructed.  This appeared only on the helper’s screen. 

We manipulated the differentiability of the puzzle pieces (solid 
colors vs. shaded) and the complexity of the puzzle (5, 10 or 15 
pieces). Each participant completed three puzzles for each 
condition (piece differentiability x puzzle complexity), randomly 
presented in a single block. The design formed a 2 (piece 
differentiability) x 3 (puzzle complexity) x 9 (trial) factorial 
within-subjects study. The order of the puzzle blocks was 
counterbalanced across participants.   

3.2 Materials 
We created 18 target puzzles by randomly selecting color pieces 
and forming configurations of 5, 10 or 15 pieces (see Figure 1). 
There were 6 different puzzles for each level of complexity, three 
formed from a pieces pool with solid colors (easier to describe), 
and three formed from a pieces pool with shaded colors (harder to 
describe). In the former case, there were at most two shades of the 
same color in the pieces pool (e.g., two distinctly different greens, 
such as bright green and dark green); in the latter case, there were 
five shades of the same color. 
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Figure 1. Examples of puzzle configurations with 5, 10, and 15 

pieces, respectively. 
The worker’s screen was laid out so that the workspace and pieces 
bay were adjacent to each other. The helper’s display was 
designed such that the 3 areas (workspace, pieces bay, and target) 
were in a triangular shape. The helper could shift his/her eye gaze 
from any area directly to any of the other two areas. 

3.3 Equipment and Software 
LCD monitors were used for displays and adjusted for color 
consistency. Sony wireless microphones were used to record the 
conversation between the subjects on separate channels. 

An eye tracking system, consisting of an ISCAN RK-426PC 
pupil/corneal reflection tracker, an ISCAN HMEIS head mounted 
eye-imaging system with head tracking sensor, a Polhemus 
InsideTRAK magnetic position sensor, and a stand-alone scene 
camera, was calibrated to each helper and recorded the 
intersection of the helper’s line of sight with the screen plane at 60 
Hz. The video feed of the scene, showing the coordinates of the 
helper’s eye gaze and the worker’s actions, was then recorded 
using a Panasonic DV-VCR. 
The helper’s focus of attention on any one of the 3 areas 
(workspace, pieces bay, and target) over time was derived from 
eye gaze coordinates. To overcome the unreliable metric posed by 
the zero error of the magnetic sensor and the pupil/corneal 
reflection tracker, we clustered all gaze coordinates in each 
session using K-Means vector quantization (VQ). We first chose 3 
initial centers in the same triangular fashion as the 3 areas on the 
helper’s display. Within 10 iterations, the algorithm converged 
and the outputs were 3 new centers. Subsequently, the helper’s 
gaze coordinates were indexed based on their proximity to these 3 
new centers. An example of the clustering result of the eye gaze 
coordinates for one of the sessions is shown in Figure 2. 

 
 
 
 
 
 
 
 
 

 
 
 
Figure 2. An example of eye gaze distribution from one section 

of the tasks. After running K-Means VQ algorithm we got 3 
clusters and classified each point’s focus of attention. 

3.4 Participants and Procedure 
Twenty-four college undergraduate and graduate students, all with 
normal color vision, participated in this study. Participants were 
randomly assigned to the helper and worker roles. They were 
seated in the same room at their respective computer terminals 
with a barrier between them so that they could hear but not see 
one another, simulating a remote collaboration environment. 

The experimenter first calibrated the eye-tracker on the helper. 
After calibration, the helper gave verbal instructions to the worker 
on how to select puzzle pieces from the pieces bay and assemble 
them properly in the workspace to complete the target puzzle. The 
worker was allowed to converse freely with the helper and ask 
questions whenever necessary. The helper was able to see the 
worker’s actions in the pieces bay and workspace. In order to 
prevent eye fatigue, participants were given a 5-minute break after 
half of the puzzles were completed. After the break, the 
experimenter recalibrated the eye-tracker. Sessions lasted 60 to 90 
minutes. 

4. STATISTICAL ANALYSIS 
We employed statistical analysis to look at the relationships 
between the helper’s gaze pattern and the following three factors: 
task properties, worker’s actions and message content. Details of 
the analysis were presented in [23]. 

4.1 Gaze and Task Properties 
To look at how task properties affect the gaze, we used a mixed-
model design in which subjects was a random factor and shading, 
puzzle complexity, trial, and block were fixed-subjects. This 
model takes individual differences in gaze into account while 
computing the fixed effects. For this analysis, we focus on 
percentage gaze directed at the pieces bay. However, because 
gaze toward the target (puzzle solution) remained relatively 
constant, gaze toward the pieces bay and gaze toward the 
workspace are inversely related (r = -.76). Consequently, the 
results for gaze toward the workspace show essentially the same 
pattern of significance but in the opposite direction. Overall, the 
fit of this model to the data was excellent (R Square = .69). A total 
of 18% of the variance was accounted for by the subject variable. 

As shown in Figure 3, gaze toward the pieces bay was 
significantly higher for shaded than for solid pieces (F [1, 182] = 
255.98, p < .0001), and significantly lower for puzzles with more 
pieces (F [2, 182] = 11.28, p < .0001). There was no interaction 
between shading and puzzle complexity (F < 1, ns). 

We also found a significant effect of trial (F [1, 182] = 37.68, p < 
.0001), indicating that helpers spent less time monitoring the 
pieces bay over trials. However, as can be seen in Figure 4, the 
trial effect only held for the easy-to-describe (solid) pieces; for 
shaded pieces, gaze toward the pieces bay remained high across 
all trials (for the interaction, F [1, 182] = 27.49, p < .0001).  

4.2 Gaze and Worker’s Actions 
Worker actions in the workspace and pieces bay were 
automatically detected. As anticipated, gaze toward the workspace 
was higher when the worker was acting in that area, and vice 
versa when the worker was acting in the pieces bay (see Figure 5). 
However, the effect of worker actions on gaze was not significant 
for solid-color puzzles. We assume this is because the solid colors 
are easy to describe and distinguish so that the helper can be 

Workspace 
Pieces 

Target Puzzle 
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confident that the worker is grabbing the right piece without 
monitoring the pieces bay. 

4.3 Gaze and Instructional Content 
In order to analyze the relationships between the helper’s eye gaze 
and the content of their instructions, two coders separated 
transcribed utterances into clauses and coded each of them as one 
of the categories shown in Table 1. In a subset of the data, the two 
coders agreed with each other 95% of the time. 

Table 1. Coding of clauses 
Code Instructional Content 

0 Description of color piece, e.g. “Take the green block” 

1 Description of location, e.g. “And then put that to the 
right of the dark gray” 

2 Correcting color piece, e.g. “A little lighter than that” 

3 Correcting location, e.g. “It’s on the very right” 

4 Others 
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Figure 3. Percentage of gaze directed toward the pieces bay as 
a function of piece discriminability (shading) and puzzle size. 
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Figure 4. Percentage gaze directed at the pieces bay as a 

function of piece discriminability and trial. 
 
 

We then computed eye gaze distributions for all clause segments 
as a function of clause coding.  Distributions were computed to 
1/60 second (Figure 6). The results illustrate that gaze pattern 
varies as a function of clause coding (description/correction of the 
next piece vs. description/correction of its location within the 
puzzle). When describing a piece, helpers overwhelmingly look at 
the pieces bay, whereas when they are describing a location, they 
are much more likely to look at the workspace. 
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 Figure 5. Helper gaze as a function of worker actions in the 
workspace and pieces bay 
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5. PREDICTING FOCUS OF ATTENTION  
The statistical analysis shows that a helper’s gaze is highly related 
to the dialogue content and worker’s actions. We implemented a 
conditional Markov model to predict the helper’s gaze and 
explore the possibility of building an automated camera system to 
support remote physical collaboration. 

5.1 The Problem 
We define the problem as a classification problem. Given a 
section of the puzzle task with the sequence of transcribed words 
as {w1, w2, …, wN}, their corresponding start times derived from 
the wave signals by the speech recognizer as {s1, e1, s2, e2, …, sN, 
eN}, then the worker’s action  mt at time t is obtained by the 
analysis of the mouse click/move events. { }1,0,1!"

t
m , where -1, 

0, 1 are the codes for Not-Moving, Moving-in-Workspace, and 
Moving-in-Pieces-Bay respectively. gt is defined as the helper’s 
gaze coded at time t,  

{ }2,1,0!
t
g , where 0, 1, 2 are the codes for workspace, pieces 
bay, and target respectively. mt and gt were processed at a 
sampling rate of 60HZ. An example of how a helper’s dialogue 
and gaze, and the worker’s action are synchronized is shown in 
Figure 7. 

At each time t we predict the helper’s gaze as 
t
ĝ . In our 

evaluation, we only consider gaze to the workspace and pieces 
bay, ignoring gazes towards the target. Let gt, t = 1 .. T, be the 
actual gaze codes collected from the experiment and processed by 
VQ algorithm (Section 3.3). The classification error at time t is 
defined as: 

!
"
# $=

=
otherwise

ggandorgif
ggerr

ttt

tt
,0

ˆ,10,1
),ˆ(       (1) 

and the performance of the classifier in one puzzle task, Acc is 
defined as: 

{ }10|

),ˆ(

1 1

orgg

ggerr

Acc
ii

T

t

tt

=
!=
"
=  ,       (2) 

where { }|10|| orgg
ii
=  is the number of gazes excluding those 

towards the target. 

5.2 Offline Prediction 
For comparison purposes, we first used human dialogue coding to 
perform the classification offline.  The helper’s gaze at time t is 
predicted using maximum likelihood estimation: 

},|Pr{maxargˆ
10

tt
orj

t mclausejg
=

= ,       (3) 

while }3,2,1,0{!
t

clause  is the clause coding in Table 1 (Section 
4.3) at time t. In both training and testing phases the clause coding 
and the worker’s actions are known. We estimated the conditional 
probabilities of each gaze target from training sample frequencies. 

5.3 Online Prediction 
As our objective is to control the camera automatically in a video 
system (such as [22]) for remote collaborative physical tasks, the 
helper’s focus of attention has to be predicted in advance based on 
previous information from the dialogue and worker’s actions. 
Using the predictive model, the camera shifts between the 
workspace and the pieces bay. We do not need to predict camera 
shift to the target puzzle (solution), as it is always available at the 
helper’s side. Moreover, in online prediction, the system does not 
have supervised knowledge of clause boundaries and coding. 

We formulate online prediction as: at each sampling point t, given 
the previous words (w1, w2, …, wi), and the previous worker’s 
actions (m1, m2, …, mt) as input, classify the next gaze code 

1
ˆ
+tg  

as 0 (workspace) or 1 (pieces bay). The classification problem is 
illustrated in Figure 8. 

Figure 7. Demonstration of the three sources of data in a 12-second period. The helper’s was giving the instruction “OK UMM 
NOW UMM THE DARKEST BLACK PIECE UMM AND THEN PUT THAT UMM TO THE RIGHT OF THE LAST `ONE 
YOU JUST PUT DOWN”. Starting time and ending time of each word are aligned with the worker’s action (-1: Not-Moving, 0: 
Moving-in-Workspace, 1: Moving-in-Pieces-Bay) and the helper’s gaze (0: Workspace, 1: Pieces-Bay, 2: Target). 

61.94 73.08 

DARKEST 
BLACK PIECE OK UMM UMM NOW THE UMM AND THEN 

PUT THAT UMM TO THE 
RIGHT OF THE LAST ONE YOU 

JUST PUT DOWN 

Time (s) 

Helper’s Gaze ( gt ) 

Worker’s Action ( mt ) 

Helper’s Dialogue ( wi ) 
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Figure 8. A multimodal classifier.  w1, w2, …, wi and m1, m2, …, 

mt are dialogue and action data collected until point t, 
respectively; 

1
ˆ
+tg

 is the classified gaze code. 

Winner-Takes-All Strategy 
Compared with the worker’s action data (of which the majority is 
-1, or Not-Moving), the helper’s utterances are a much richer 
source of information. Due to the difficulty in capturing the 
fluctuations of the helper’s gaze within the start and end times of a 
single word, we don’t expect to predict the gaze well at every 
sampling time. Therefore we apply a winner-takes-all strategy and 
smooth the helper’s gaze and worker’s action data based on the 
boundary of words. That is, the decision is only made at the end 
of each word. Let wi, si, ei be the ith word and its starting and 
ending time, and define the smoothed action Mi and gaze Gi as: 
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Mi and gaze Gi are interpreted as the majorities of action and gaze 
codes between time ei-1 and ei (ignoring the target area). This 
process is graphically shown in Figure 9. 

Now the problem becomes: given w1, w2, …, wi and M1, M2, …, 
Mi as input features, output the prediction of Gi+1 as 0 
(workspace) or 1 (pieces bay). 
A Conditional Markov Model Classifier 
Since clause boundaries and coding have proven to be very useful 
for gaze prediction and are not available in online settings, we 
predict the clause coding of each word. To capture the 
dependencies between current word/action and previous 
word/action more directly we propose a conditional Markov 
model. Pairing gaze (G = 0 or 1) and clause coding (Clause = 0, 1, 
2, or 3), we formed a sequence of 8 possible states. Let W

v
 and 

M
v

be the word sequence and action sequence respectively. The 
probability of a state sequence S

v
 conditioned on the observation 

sequences W
v

 and M
v

 is inferred through factors ! , ! , and ! : 
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!  captures the relationship between the current state and the 

previous state, while !  and !  characterize features W
v

 and M
v

 
using trigram. Figure 10 shows the factor graph representation of 
the conditional Markov model. 

 

 
Figure 9. The smoothed action and gaze data based on the 

Winner-Takes-All strategy (Eq. (4) and Eq. (5)). 

Figure 10. A conditional Markov model. 
To decrease the number of parameters, we classify each word as 
one of the following 13 categories: Color_Name (e.g., “red”), 
Preposition (e.g., “above”), Adjective (e.g., “darkish”), Verb (e.g., 
“take”), Linking_Verb (e.g. “are”), Noun (e.g., “box”), Pronoun 
(e.g., “you”), Positive_Feedback (e.g., “yes”), Negative_Feedback 
(e.g., “wrong”), Adverb (e.g., “very”), Conjunction (e.g., “and”), 
Non_Word_Utt (e.g., “umm”), Other. !  is approximated by: 
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where ci is the category of wi. 

Since training is supervised, we employ a maximum likelihood 
method to learn the parameters, and Good-Tuning smoothing to 
estimate the unseen trigram in the training data. Moreover, as 
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discussed in Section 4, the gaze distribution varies as a function of 
task characteristics. Therefore we estimate two sets of parameters, 
one for solid puzzles and the other for shaded puzzles. In testing 
we use Viterbi algorithm to find the optimal path given the 
parameters and observations. The performance of the classifier 
was evaluated according to Eq. (2). 

5.4 Experimental Results and Discussion 
To test our classifier, we used the data described earlier (i.e., 216 
puzzle tasks from 12 pairs of subjects). We trained and tested with 
solid and shaded puzzles separately. Given puzzles of the same 
color differentiability, we used half of the data for training and the 
other half for testing. Then we switched the training set and 
testing set and performed the experiment again. 

Offline and online gaze prediction accuracies for solid and shaded 
puzzles are listed in Table 2. In predicting gaze, the accuracies for 
shaded puzzles are significantly higher than those for solid 
puzzles. It can be explained by the statistical analysis in Section 
4.2 (Figure 5), showing that data from workers’ actions are more 
discriminative for shaded puzzles. Online prediction is not as 
good as offline prediction because it is a more challenging 
problem given that clause boundaries and coding are unknown. 

Table 2. Test set accuracies in predicting  
helpers’ focus of attention 

Task Property Offline Prediction 
Accuracy 

Online Prediction 
Accuracy 

Solid Puzzles 69.81% 65.40% 

Shaded Puzzles 76.62% 74.25% 

Tables 3 and 4 show the confusion matrixes. For solid puzzles, the 
system classified the workspace better, most likely because the 
prior probably of gaze toward the workspace is higher than that of 
gaze toward the pieces bay (see Section 4.3). In contrast, for 
shaded puzzles, the pieces bay had a higher prior probability and 
the classifier was better at classifying it.  

Table 3. The confusion matrix for solid puzzles. 

 0 (Workspace) 1 (Pieces Bay) 
 Offline Prediction 
0 (Workspace) 79.56% 20.44% 

1 (Pieces Bay) 43.13% 56.87% 

 Online Prediction 

0 (Workspace) 75.17% 24.83% 

1 (Pieces Bay) 47.24% 52.76% 

Table 4. The confusion matrix for shaded puzzles. 

 0 (Workspace) 1 (Pieces Bay) 
 Offline Prediction 
0 (Workspace) 61.11% 38.89% 

1 (Pieces Bay) 12.73% 87.27% 

 Online Prediction 

0 (Workspace) 57.56% 42.44% 

1 (Pieces Bay) 15.42% 85.58% 

To examine the success of the conditional Markov classifier in 
predicting dialogue content, we define the instructional coding 
prediction accuracies as the percentage of correctly classified 
words. The accuracies for solid-color and shaded-color puzzles 
were 59.00% and 48.37%, respectively. Prediction of instructional 
coding for solid-color puzzles was much better because helpers 
used simpler language to describe the puzzle pieces. 

6. CONCLUSION AND FUTURE WORK 
In this paper, we have demonstrated the feasibility of predicting 
focus of attention in remote collaborative tasks. The statistical 
analyses demonstrate that in remote collaboration, the percentage 
of time a helper looks at different targets is predictable from task 
properties, the worker’s actions, and message content. The results 
are consistent with a conversational grounding view of 
collaboration (cf. [4]): When a helper lacks confidence that his/her 
instructions were understood in the context of previous 
interactions and a shared common vocabulary, he/she seeks 
additional visual evidence of understanding from the worker's 
environment. 

Based on our analysis, we formulated the problem of predicting 
gaze in remote collaboration as a multimodal classification 
problem. We further employed a conditional Markov model to 
predict gaze as well as clause coding in real time. The 
experimental results show that overall accuracy is 65.40% for 
solid color puzzles and 74.25% for shaded puzzles.  These results 
indicate the feasibility of developing intelligent video camera 
systems that predict where a helper wants to look in real time 
during remote collaboration. Such a system can optimally use 
network resources and enhance remote collaboration. 

Our future research will follow up on three aspects of our findings. 
First, our classifier was more accurate when discriminative 
workers’ action data was available. While it is easy to obtain this 
data during online collaborative tasks, it is much more difficult in 
3D tasks. This suggests the need to monitor and interpret the 
worker’s actions in physical collaborations. Second, our current 
model does not take workers’ messages into account. 
Incorporating this information should enhance overall accuracies 
of prediction. Finally, our accuracy rates were higher than random 
guessing but still far from perfect. We plan to conduct behavioral 
research to determine how good an intelligent video camera 
system must be in order to be beneficial in practical use.  
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