
Towards Development of Multilingual Spoken Dialogue Systems

Hartwig Holzapfel

Interactive Systems Laboratories
Universiẗat Karlsruhe

Germany
hartwig@ira.uka.de

Abstract
Developing multilingual dialogue systems brings up various challenges. Among them development of natural language understanding
and generation components, with a focus on creating new language parts as rapidly as possible. Another challenge is to ensure compati-
bility between the different language specific components during maintenance and ongoing development of the system. We describe our
experiences with designing multilingual dialogue systems and present methods for multilingual grammar specification, as well as devel-
opment and maintenance methods for multilingual grammars used for language understanding, and multilingual generation templates.
We introduce grammar interfaces, similar to interface concepts known from object oriented languages, to improve compatibility between
different grammar parts and to simplify grammar development.

1. Introduction
New applications are emerging that make use of cus-

tomized speech software, such as humanoid robot interac-
tion, telephony services, or information kiosks. Especially
these services are (of course) not restricted to a single user,
neither are they restricted to a single language. This can
either mean that one system is deployed to interact with
different users speaking different languages. But it can
also mean that a company might be interested in deploy-
ing one system in a different country, and while keeping
the functionality the same, porting the system to a new
interaction language.

Here we want to present our efforts that we have so far
undertaken within two projects developing multilingual
systems and porting existing systems to new languages,
as well as new work that we wish to undertake in the near
future to ensure compatibility between different language
modules. We present methods that reduce the difficulty
in porting grammars to new languages and to ensure their
compatibility during changes of the system.

We have been developing multilingual spoken dia-
logue systems for an intelligent room within the FAME
project1. and a humanoid robot platform (Stiefelhagen
et al., 2004; Gieselmann et al., 2003) within a German
collaborative research effort named SFB5882. The lan-
guages created for the FAME system are English, Spanish
and German; English and German for the humanoid robot.

Section two gives an overview of related work. Section
three describes our dialogue system. Section four, five and
six describe the natural language component with multi-
lingual extensions and grammar interfaces, the multilin-
gual generation part and generation of language resources
from databases. Section seven covers maintenance, while
section eight gives an outlook to future work.

1The FAME project: http://isl.ira.uka.de/fame, presented
at IST 2004 Den Haag, and the Barcelona FORUM 2004
http://www.barcelona2004.org

2SFB588 - collaborative research effort on humanoid robots:
http://www.sfb588.uni-karlsruhe.de

2. Related work

Some of the above parts, namely setting up a new sys-
tem from scratch or porting an existing dialogue system to
a new language, relate to the field of rapid prototyping. So
far, some approaches have been taken to support rapid pro-
totyping for spoken dialogue systems like in ARIADNE
(Denecke, 2002). Other work focuses on the definition of
meta grammars to design multilingual grammars (Kinyon
and Rambow, 2003), and facilitate the generation of par-
allel multilingual grammars (Clement and Kinyon, 2003),
by using a metagrammar that is annotated with syntactic
properties. (Denecke, 2000) describes separation of lan-
guage specific syntax and language independent seman-
tics, (Kim et al., 2003) describes methods for grammar
porting.

3. The Dialogue System

For dialogue management we use the TAPAS dialogue
framework. TAPAS uses dialogue algorithms developed
within the language and domain independent dialogue
manager ARIADNE (Denecke, 2002) which is specifi-
cally tailored for rapid prototyping of spoken dialogue sys-
tems. The dialogue manager uses typed feature structures
(TFS) (Carpenter, 1992) to represent semantic input and
discourse information. A context-free grammar is used to
parse the user utterance. The grammar is enhanced by in-
formation from the ontology defining all the objects, tasks
and properties about which the user can talk. After pars-
ing, the parse tree is converted into a semantic representa-
tion and added to the current discourse. The dialogue man-
ager unifies compatible information in discourse or opens
subdialogues to process new threads. If all necessary in-
formation to accomplish a goal is available in discourse,
the dialogue system calls the corresponding service. If
some information is still missing, the dialogue manager
generates questions to request this information.

For speech recognition, we are using the Janus Recog-
nition Toolkit (JRTk) (Finke et al., 1997) with the Ibis sin-
gle pass-decoder (Soltau et al., 2001). We use the option

of Ibis to decode with context free grammars (CFG) in-
stead of statistical n-gram language models (LM). These
context free grammars are generated by the dialogue man-
ager that uses the same grammars to convert the resulting
parse tree into typed feature structures. In the same way,
the dialogue manager can be used in combination with
other speech recognizers that can decode with context free
grammars, by providing grammars in SOUP, PHOENIX,
JSAPI, and Microsoft SAPI formats. In addition, the sys-
tem offers a tighter integration with Janus by being able to
weight (e.g. boost) different grammar rules depending on
the dialogue context (F̈ugen et al., 2004).

Figure 1: Flow diagram showing the integration of NLU
component into the dialogue system.

The dialogue system uses semantic grammars (Ga-
valda, 2000) to interpret spoken (or typed) input. The inte-
gration of the grammars (natural language understanding)
into the system is shown in figure 1. The processing of the
dialogue algorithms and the discourse representation are
language independent. This allows using general dialogue
and discourse algorithms, without depending on language
specific peculiarities.

The dialogue manager controls an application (e.g.
robot control) through an API (application programming
interface) that is defined by the application. This API is
language independent and defines the services that can
be executed by the system. Since the dialogue manager
is task-oriented, most of the dialogue goals are created
to collect information that is required to execute func-
tions defined by the application’s API. Additional dia-
logue goals (and subgoals) allow non task-oriented com-
munication, such as greetings, error correction, etc. More
language specific information is required to generate clar-
ification questions or respond to the user. Generation is
accomplished by generation templates. They have a lan-
guage independent interface, representing the concepts of
what the template generates, and a language specific gen-
eration component, that is hidden behind the language in-
dependent interface.

4. Natural Language Understanding
One important part of a multilingual dialogue system is

the development of natural language understanding gram-
mars. We use vectorized context free grammars that allow
a combination of semantic and syntactic tags to be used
(Denecke, 2000) for the definition of nonterminal sym-
bols.

4.1. Multilingual Grammars with Grammar
Inheritance

Vectorized context free grammars are similar to (se-
mantic) context free grammars, in that they exist of a set
of nonterminal symbols, a set of terminal symbols, a set of
rules and a set of start symbols, and semantic annotation of
right hand side elements of a rule. In addition, vectorized
context free grammars allow multiple inheritance of nodes
and definition of vectorized nonterminal symbols. A vec-
torized nonterminal consists of a vector< e1, e2, ..., en >
whereei is an element of a partially ordered setVi.

Our implementation defines a nonterminal as a quadru-
ple with the elements semantic concept, syntactic cate-
gory, subcategory, and language. The grammar inheri-
tance mechanism follows the general approach of vec-
torized context free grammars. By using inheritance, the
grammar writer can define general language independent
rules and inherited rules for each language.

Vectorized grammars allow a separation and modu-
larization of generic and specific grammar parts. Gen-
eralization of concepts includes domain-independent and
language independent information. The above definition
allows to create separated language resources as well as
multilingual resources. Separated language resources fa-
cilitate that different grammar writers work on different
language grammars. Multilingual resources are useful to
specify declaration with similar structure, e.g. importing
information from a database, where the import statements
only differ in language, see example in section 5.

4.2. Grammar Interface Definitions

Similar to object oriented languages like Java, our
grammar formalism allows definition of abstract classes
and interface classes. An abstract class defines a mixture
of implemented rules, as well as a set of frame definitions
(similar to deferred rules). Abstract classes allow the defi-
nition of semantic frames that need to be implemented by
rules in different languages. Thus, frame definitions re-
semble abstract methods known e.g. from Java.

A grammar interface is similar to an abstract class, but
doesn’t allow implemented rules, just frame definitions.
While an interface is language independent, an abstract
class implements language specific code, and is thus ei-
ther bound to a language or contains multilingual grammar
nodes.

The definition of grammar interfaces can thus be used
to assure equivalent functionality in different language im-
plementations. An example of defining and implementing
a grammar interface is given in section 5.

The aim, when developing a new language, is to create
new language-specific grammar parts that are converted to
the same (language independent) semantic representation
as existing languages. Besides using grammar interfaces
that define what functionality must be covered, we want
to assist the grammar writer in giving him examples from
other, existing languages. Therefore, the system provides
a list of all possible semantic input structures. Plus a map-
ping from existing parse-trees to the semantic structures
they are converted to. The grammar developer can then
follow this mapping and rewrite language specific gram-

mar parts. The initial English grammar was developed by
two researchers working in the field of grammar devel-
opment. However, translating the robot system’s gram-
mar from English to German was accomplished by a non-
expert student (German native speaker, with little expe-
rience in grammar development). The same scheme was
also applied to the German generation component.

5. Multilingual Generation
The other main part that has to be developed for a

multilingual dialogue system, is the spoken output of the
system, which is called speech generation. To allow lan-
guage independent dialogue management, the system uses
template functions. They are defined with language in-
dependent concepts representing the output they generate.
The dialogue manager only uses the language independent
concept representation. The template functions are imple-
mented in the language-specific part and generate text in
the given language. Therefore they have to translate con-
cepts that are passed as parameters and variables pointing
to discourse elements, which are also semantic concepts.

Since the variability of the system’s spoken output is
much smaller than the possible user input, this part means
less effort to translate than the input grammars. How-
ever, there might be a long list of objects loaded from a
database. Their generation information is read from the
database, equivalent to the generation of natural language
understanding grammars from database.

Depending on the type of language that is required for
the system, these template functions can be very simple or
very complex. Languages like English can be added very
easily. However, highly inflecting languages require more
attributes such as case and gender to correctly generate the
sentence including the inflected noun and its propositions.

The following code line shows an invocation of a tem-
plate function informing the user that a given object is
available.

#Available {$objs.first.[OBJ|NAME]}

The String ”$objs.first.[OBJ|NAME]” calls a dialogue
variable by accessing discourse information with the given
typed feature structure path ”[OBJ|NAME]”. The English
generation template looks like this: ”{0} is available” and
generates the response ”Foo is available”. Since the ob-
ject is read from a database it is only referenced by its lan-
guage independent semantic representation, e.g. object-id
like a unique name. The generation components converts
the object id to the string ”Foo” by using a translation ta-
ble. The above example is very simple, also for other lan-
guages than English, since only the nominative is applied
and the word is not inflected. For other cases the object
string is extended with additional case-tags in the gener-
ation string. For example, ”{0}[akk]” can be specified to
extended the table lookup using case and/or gender infor-
mation for text generation. More complex sentences (for
inflecting languages as German and especially Slavic lan-
guages) where gender or case agreement is required (e.g.)
for adjectives and nouns require more complex generation
capabilities. This can be handled with unidirectional refer-

ences (generation of adjective references gender of noun)
or full unification of case and gender tags.

6. Grammar-Generation from Database
Information

The system supports generation of grammar rules from
database information. This mechanism is used both in the
FAME system, and in the humanoid robots system. The
FAME system offers a multimodal interface to retrieve and
discover information about previously recorded lectures
during a seminar or a conference. There, all information
about lectures, speakers, topics, keywords, etc. is stored
in a database. The system uses this information to gener-
ate grammar rules that allow the user to query e.g. for a
speaker. The big advantage is that new data can be added
to the database, without changing the dialogue manager
code or its grammar files. Similar, in the humanoid robot
system, databases are used to describe the robot’s envi-
ronment model including the description of all objects it
knows about.

Furthermore, in this database also translation informa-
tion can be found to support grammar-development for
multiple languages and multilingual grammars. It contains
multi-lingual information for all stored objects. When
adding new objects, such as titles of the talks, week-
days, information on lecture places, etc., this information
is added for all existing languages. The language specific
information is then used by the language specific grammar
parts and integrated as terminal symbols. Using grammar
interfaces and rule inheritance, the definition of a rule con-
taining the name of a lecture looks as follows. A rule in-
terface (frame definition)

iframe <act_askPlace,VP,_> =
<obj_Place,N,_,_> {PLACE obj_Place}

requires that the rule< obj P lace,N, , > is defined
in all implementing language specific grammars. Then
two rules, one for English (with language tag EN)<
obj P lace,N, , EN > and one for Spanish (with lan-
guage tag ES)< obj P lace,N, , ES > are specified.
The right hand side of both rules contains a database
import instruction. The import statement specifies the
database location, table, field, and semantic value.

<obj_Place,N,_,ES> = import
$db Lecture PlaceES { PLACE import }

7. Maintenance
Our current efforts are to support maintenance of mul-

tilingual grammars. The basic idea is to record changes
that are done in one language and to project these changes
to grammar parts of the remaining languages. The pro-
jection results in an information (”todo”-item) annotating
which grammars are likely to require improvement. Sim-
ilar to the mapping described above, the todo-items are
sought by computing the mapping between changed nodes
and their projected TFS. The affected typed feature struc-
tures are marked. Then, for all remaining languages the in-
verse mapping is computed between grammar nodes/parse
trees and the projected semantic representation. Note that

the inverse mapping is no longer a mathematical function
any more, but still a mapping. When thinking of a graph,
one can imagine edges from grammar nodes to TFSes,
then finding the inverse mapping is simply looking at all
incoming edges in a TFS-list. All grammar nodes that are
connected to a marked TFS via an edge are then marked
with todo-items and the original change.

The presented approach uses offline methods to detect
changes. This is done by comparing changes (as detected
by a cvs or subversion3) in the grammar tree to the previ-
ously stored version. Other possibilities are to use design-
time listeners that are integrated into the editor and track
complex changes while they occur. This is better suited,
and offers better performance to track changes such as
moving tree parts. However, this requires that the devel-
oper must use this editor, and changes cannot be computed
offline.

8. Conclusion and Outlook
We have presented our experiences with creating and

maintaining multilingual dialogue systems. The dialogue
system contains a language independent core and lan-
guage specific understanding and language generation
components, and supports mechanisms to load language
specific information from a database during runtime. We
have presented new methods to multilingual grammar de-
sign by using grammar interfaces and abstract rules, re-
sembling interfaces and abstract classes as known from
object oriented programming languages.

8.1. Towards an Integrated Development
Environment

After collecting experiences with the design of mul-
tilingual dialogue systems and still going to continue in
this area, we are undertaking efforts, to integrate existing
tools into an integrated development environment (IDE).
So far we have been integrating some tools into the open
source platform Eclipse, which currently is the most com-
mon IDE platform available. Existing tools for natural
language processing do not cover enough IDE functional-
ity for multilingual editing and object oriented grammars.
The functionality shall cover methods for code navigation
and runtime code-checking, resembling functionality from
IDEs for object oriented languages. In addition we want
to integrate tools for evaluation, testing, and comparison
of multilingual resources, including change management
of reference languages to automatically create translingual
todo-items during maintenance and ongoing development
of parallel multilingual resources.

9. Acknowledgements
We would like to thank Petra Gieselmann, Patrycja

Holzapfel, Marta Tolos and Raquel Tato for doing major
parts of the grammar development and Ulf Krum and Tang
Ting for ongoing efforts in assisting me to provide gram-
mar development tools.

3cvs and subversion are commonly used version control sys-
tems. Both use ”diff-tools” to detect changes in files.

This work was supported in part by the German Re-
search Foundation (DFG) as part of the SFB 588 on hu-
manoid robots and within the FAME project by the Eu-
ropean Union as IST-2000-28323, and by the European
Commission under project CHIL (contract #506909).

10. References
Carpenter, B., 1992.The Logic of Typed Feature Struc-

tures. Cambridge University Press.
Clement, Lionel and Alexandra Kinyon, 2003. Generat-

ing parallel multilingual lfg-tag grammars from a meta-
grammar. InProceedings of the 41st Annual Meeting of
the Association for Computational Linguistics (ACL).

Denecke, Matthias, 2000. Object-oriented techniques in
grammar and ontology specification. InProceedings of
the Workshop on Multilingual Speech Communication.

Denecke, Matthias, 2002. Rapid prototyping for spoken
dialogue systems. InProceedings of the 19th Interna-
tional Conference on Computational Linguistics. Tai-
wan.

Finke, M., P. Geutner, H. Hild, T. Kemp, K. Ries, and
M. Westphal, 1997. The karlsruhe-verbmobil speech
recognition engine. InProceedings of the International
Conference on Acoustics, Speech and Signal Process-
ing, ICASSP-97. Munich, Germany.

Fügen, Christian, Hartwig Holzapfel, and Alex Waibel,
2004. Tight coupling of speech recognition and dia-
log management - dialog-context grammar weighting
for speech recognition. InProceedings of the Interna-
tional Conference on Spoken Language Processing, IC-
SLP 2004.

Gavalda, Marsal, 2000. Soup: A parser for real-world
spontaneous speech. InProceedings of the 6th Interna-
tional Workshop on Parsing Technologies (IWPT-2000).

Gieselmann, P., C. F̈ugen, H. Holzapfel, T. Schaaf, and
A. Waibel, 2003. Towards multimodal communication
with a household robot. InProceedings of the Interna-
tional Conference on Humanoid Robots.

Kim, Roger, Mary Dalrymple, Ronald M. Kaplan, Tra-
cy Holloway King, Hiroshi Masuichi, and Tomoko
Ohkuma, 2003. Multilingual grammar development
via grammar porting. InProceedings of the ESSLLI
2003 Workshop on Ideas and Strategies for Multilingual
Grammar Development.

Kinyon, Alexandra and Owen Rambow, 2003. Using a
metagrammar for parallel multilingual grammar devel-
opment and documentation. InProceedings of the ESS-
LLI 2003 Workshop on Ideas and Strategies for Multi-
lingual Grammar Development.

Soltau, H., F. Metze, C. Fuegen, and A. Waibel, 2001.
A one pass- decoder based on polymorphic linguis-
tic context assignment. InProceedings of the Auto-
matic Speech Recognition and Understanding Work-
shop, ASRU-2001. Madonna di Campiglio, Trento,
Italy.

Stiefelhagen, R., C. F̈ugen, P. Gieselmann, H. Holzapfel,
K. Nickel, and A. Waibel, 2004. Natural human-robot
interaction using speech, gaze and gestures. InPro-
ceedings of the International Conference on Intelligent
Robots and Systems. Sendai, Japan.

