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ABSTRACT 

This paper presents an online learning method for object 
tracking. Motivated by the attention shifting among local 

regions of a human vision system during tracking, we 

propose to allow different regions of an object to have 
different confidences. The confidence of each region is 

learned online to reflect the discriminative power of the 

region in feature space and the probability of occlusion. 
The distribution of region confidences is employed to 

guide a tracking algorithm to find correspondences in 

adjacent frames of video images. Only high confidence 
regions are tracked instead of the entire object. We 

demonstrate feasibility of the proposed method in video 

surveillance applications. The method can be combined 
with many other existing tracking systems to enhance 

robustness of these systems. 

1. Introduction 

Object tracking is one of the prerequisites for analyzing 

and understanding video data, and has been an active 

research topic in the computer vision community over the 

last two decades. The aim of tracking is to automatically 

find the same object in an adjacent frame from a video 

sequence once it is initialized. The previous research on 

object tracking falls into three different categories: 

appearance modeling, motion modeling, and searching 

methods.  

Appearance modeling represents an object in an image by 

certain features from video. Different color models, e.g., 

color histograms, are commonly used to characterize 

moving objects in images. Online selection of color 

spaces has been studied in object tracking [1]. 

Appearance can also be simplified by using contours in 

tracked objects that can be easily segmented from their 

backgrounds [2]. On the other hand, pixel values are 

widely used to represent background objects, such as in 

inter-frame differencing scheme, Gaussian mixture model 

over time [3], adaptive filter methods [4], minimal and 

maximal intensity value methods [5], PDE level set [6], 

Hidden Markov models (HMMs) [7], and kernel density 

estimation techniques [8].  

A motion model predicts an object’s location in a new 

frame using its history. Linear models impose constraints 

that an object can only has translational or affine motions 

[9]. Non-linear models impose less constraint on motion 

than linear models, but they are more difficult to estimate 

and are more sensitive to noise [10].  

Searching methods use various strategies to find an 

object, within an area predicted by a motion model, that is 

most similar to the appearance of the tracked object in an 

adjacent frame of a video sequence. Apart from the 

location, a searching algorithm may also search for the 

most proper scale of the tracking target. Many efficient 

searching algorithms, such as mean-shift [11], have been 

developed to search local best matching of a rigid or non-

rigid object. A Kalman filter tracks objects using both 

foreground and background motion models [13]. Particle 

filtering is superior to Kalman filtering using non-

parametric density estimation and multiple hypotheses 

[14]. These three approaches, however, only address the 

problem of “how to track an object,” under the 

assumption that what to track is known.  

In this paper, we are mainly interested in investigating 

another important problem: “what should be tracked?” in 

a tracking process. In other words, our goal is to improve 

object tracking by tracking selected local regions instead 

of tracking the entire object. 

Occlusions and complex backgrounds (backgrounds with 

similar colors as foreground objects) are two major 

challenges for tracking an object in video. Many tracking 

errors are encountered when an object is tracked in front 

of a background that looks similar to the object in terms 

of tracking features. For example, in Figure 1 (row 1) the 

person in the blue shirt and white pants looks very similar 

to the background with blue windows and white wall if 

the tracking algorithm depends on color information. 

Tracking errors may also occur because of occlusion. 

Even partial occlusions will sometimes dramatically 

change the appearance of a tracked target in a feature 

space, and therefore increase the probability of tracking 

failure. However, a human vision system does not have 

any problem performing perfect tracking in these cases. 

In practice, very often a partially occluded object still 

contains enough discriminative tracking information in its 

non-occluded regions relative to its surroundings. Recent 

psychology research results [15] suggest the same, 

showing that a human vision system does shift its 

attention among different local regions during the 

observation of a moving object. Unlike the global focus 

of the attention process, which has been applied to model 

human attention [19] and motion grouping [20], this 
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subtle attention shifting implies that different local 

regions of an object should have dynamically different 

confidences during a tracking task.  

In this research, we present an approach for learning the 

confidences of local regions of an object online during 

tracking. We propose associating different local regions 

of an object with different confidences on the basis of 

their discriminative powers from their background and 

probabilities of being occluded. To this end, object 

appearances are first accumulated using a layered 

representation. We then partition the object area indicated 

by its associated layer into overlapping regions with the 

same size. The confidences of these regions are learned 

online using the distinguish power on the basis of 

matching distances and a Gaussian occlusion model, 

based on the discriminative powers and the occlusion 

probabilities. The discriminative power of a region can be 

exploited between the region and its local background [1]. 

The occlusion probability of a region is estimated from 

the distances between front layers. We further propose 

three alternative bias models to integrate multiple region 

confidences into a state-of-the-art tracking algorithm. 

Using these models, we illustrate the advantages of using 

region confidences against occlusions and a complex 

background. 

Figure 1 Illustrated high confidence regions in object 

tracking with occlusions and complex backgrounds. 

The first row illustrates that the center of the high 

confidence regions shifts up when the bottom of the 

object is occluded. The second row shows the changes 

of high confidence regions due to the background 

similarity and potential occlusion. 

2. A Method of Exploiting Region Confidences 

Intuitively, we believe that a tracking system may pay 

more attention to non-occluded regions or outstanding 

regions to track an object against occlusion and a 

complex background. Recent psychology results [15] 

have provided some scientific evidence for this process in 

a human vision system. Figure 1 illustrates two examples 

of the shift to regions with high confidence during 

tracking. The first example shows that the center of high 

confidence shifts up when the bottom of the object is 

occluded. In the second example, tracking attention is 

paid firstly to the middle of the object because the upper 

and lower parts of the object have similar color to the 

surrounding background. The confidence of the upper 

body increases as the object moving away from the blue 

windows. The last image shows that a potential occlusion 

from an object (person) on the right reduces the 

confidence of the regions on the right side. Although the 

mechanism of this function in a human vision system is 

not completely known to psychologists, as computer 

scientists we are curious to know if a functionally similar 

mechanism can be implemented in a computer vision 

system to improve object tracking.  

Figure 2 An overview of the proposed approach.  

Figure 2 shows the diagram of an approach to 

characterize the role of region confidences in a tracking 

process. In the proposed approach, we first use a layer 

representation to remember the appearance of an entire 

object. There are two types of layers, front layer and 

background layer, which are updated using tracking 

results from every frame.  

Then, an object is tracked by focusing on some high 

confidence regions instead of the entire object. The 

confidences of the regions are learned from the tracking 

results in the previous frame. Given location and scale of 

an object in the previous frame, we partition the object 

and its surroundings with a sliding window into several 

overlapping regions. The confidence of each region is 

then computed according to its discriminative power and 

probability of being occluded.  

After obtaining the high confidence regions of an object, 

we map them to its latest layer model and crop their 

appearances. To combine multiple high confidence 

regions, we propose three alternative spatial bias models.  
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Each of these spatial bias models can be integrated into in 

a traditional tracking algorithm, for example the mean 

shift algorithm.  

The location and the scale of the entire object are then 

predicted by using the relative positions of the tracked 

regions in its layer model. 

3. Layered representation 

In order to keep updating appearances of an object in 

video frames, we build a layer for each object in the 

foreground and a layer for the background. Layered 

representation of a video was proposed by Wang et al. 

[16] and extended by many other researchers, including 

Darrell et al. [17] and Tao et al. [18]. In this paper, a layer 

model of an object at time t is defined as 

, ,t t t tL PO A D , where tPO  is denoted as the location 

of an object in frame t. We assign this value as the 

geometric center of the object. tA  indicates the 

appearance of the object, and tD  encodes the depth of the 

layer in our representation. The background layer has a 

depth 0tD . The depth of a front layer is always greater 

than 1 but may vary during a tracking process.  

3.1. Kernel density estimation of a layer model 

Traditionally, the appearance of a layer at time t should 

consist of only the object segmented from background 

and occlusions. However, a perfect segmentation is 

difficult to obtain with occlusions. We use the kernel 

density estimation (KDE) proposed by Elgammal [8] to 

avoid the difficulty of segmentations in layer modeling.  

Given a set of appearances 
1 2
, ,...,

nt t tA A A A  of a layer 

extracted with rectangular windows from n frames, we 

can normalize the size of each appearance and represent it 

as
1 2
, ,...,

nt t tA A A A . Let tA x  be a pixel value at a 

location x in the rectangle appearance patch of tA . Given 

the observed pixel value tA x  in a tracking candidate 

window tA  (can also be normalized to tA ), we can 

estimate the probability of this observation as: 

1

1
P ,

i

n

t i t t
i

A x K A x A x
n

, (1) 

where K is a kernel function defined as a Gaussian 

function: 
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The constant  is the bandwidth. Using the color values 

of a pixel, the probability can be estimated as: 
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where i , i= 1,2….n, are the weights associated with 

appearance samples in the model A, which can be 

computed as: 

1
P ( )

i

ti

ti
x A

A x
A

.   (4) 

3.2. Layer update 

Using the KDE technique, the layer update adapts the 

appearance of model A using new samples. The model A

needs to be initialized with only one example at the 

beginning of a tracking process. Appearances of the 

tracked object are added into A until the number of 

samples reaches a pre-specified value n. We use n=25 in 

this paper. 

4. Region confidence learning 

Let us denote D  as the matching distance between the 

appearance of an object (layer L) and a hypnosis image 

area  in an object tracking algorithm. The matching 

distance is usually defined in a feature space against some 

types of variance in the object appearance during the 

tracking. For example, the color histogram is robust to 

non-rigid object motion. To apply the matching distance 

on local regions of the layer L, we divide a layer into m
overlapping regions as shown in Figure 3. For each 

region r, we denote rC  as its confidence, 1r
r

C . We 

assume the matching distance of the entire area is a linear 

combination of its local regions: 
r

r
r

D C D ,    (5) 

where rD  is defined as the matching distance of the 

region r. We further define the correct location of the 

object as 0 . Since an optimal set of region confidences 

should make the matching distance at the correct location 

0
D  outstanding from the other locations, we maximize 

the sum of the square of the differences of the matching 

distances from locations s to the 0  with respect to the 

confidence set { }rC C :

0 0

2
2

arg max arg max r r
r

C r

D D C D D

.(6)

Obviously, we should only choose one region in the ideal 

case to obtain the best tracking result. In practice, we do 

not know the correct location 0  in a new video frame 

before tracking. However, the values rD  and 
0

rD  can be 



estimated from the previous tracking result, when 

appearances of the object and the background do not 

dramatically change. 

Figure 3 Overlapped regions of an object located by 

its associated layer. 

In detail, given the tracked location of the object in a 

previous frame, we are able to compute rD  and 
0

rD

using the layer model and obtain the region confidences. 

These confidences are very similar to the corresponding 

confidences in the current frame, though they are not 

exactly the same. In our experiments, regions that contain 

small, non-rigid motion appear slightly different, as they 

are in the layer model. Occlusions may also change the 

appearances of regions dramatically. It is not very robust 

if we only keep one region as in an ideal case. It is 

sometimes even harder to find an outstanding region in an 

object layer, especially when local regions are too small. 

The confidences therefore need to be estimated in a more 

robust way. To this end, we consider that a region’s 

confidence rC is related to predicted discriminative 

power and the predicted probability of being occluded.  

From Eq (7), the discriminative power of a local region is 

expected to have a high value if the sum of the square of 

the differences of the matching distances between the 

hypnosis locations s and the true locations 0  is high. 

We thus define a function f that select regions with the 

highest predicted discriminative power of the region t

using the rD  and 
0

rD  from the object layer and latest 

frame. Let us define f  as the selective function based on 

the discriminative power of the local regions. The method 

of learning the function f is discussed in the Section 4.1. 

Apart from the predicted discriminative power, we also 

need to consider occlusions that may introduce 

appearance changes when regions in a layer model are 

used to predict the object appearance in a new frame. 

Occlusions may completely change the appearance of 

some regions. Let us denote the probability of region r

being occluded rO . We use rO  as a weight in estimating 

the region confidence. Therefore, the confidence can be 

estimated as: 

1r r rC f O , (7) 

where  is a normalizer to keep the sum of the 

confidences equal to 1. The parameter  is a scalar to 

amplify the probability rO  into the range of [0, 1].  

4.1. Learning the discriminative power 

Although selecting only one region is not always 

practical, we still expect to select as few regions as 

possible to avoid unnecessary computation. Therefore, 

the discriminative power function f should be able to 

select as few regions as possible while keeping the 

discriminative power strong and robust enough to track 

an object in a new frame.  

We first limit outside area N to the surroundings of the 

object, which is usually the same as the searching range 

of a tracking algorithm. As we partition an object area 

(area P) into local regions, we may accidentally partition 

some background area (area N) into local regions as 

shown in Figure 4. The discriminative power of a 

candidate region r in the P area is the matching distances 

from this region to every the regions in the N area, which 

is defined as the weighted sum of the matching distances:  

( , )

( ) nei N

nei N

nei r D nei r

Dist r
nei r

,   (8) 

where the matching distance function D is the same as the 

color histogram matching distance used in Eq. (5) and the 

distance nei r  is denoted as the distance between the 

centers of the two regions.  

To select regions using the Dist values, we model the 

distribution of the Dist values of all regions in the P area 

as Gaussian: 

( ( )) ( , )P Dist r G .

The regions with high confidences are then selected the 

threshold: 

,

N N N N N

N P P P N 

N P P P N 

N P P P N 

N P P P N 

N N N N N 

Figure 4 Sampling the regions around a moving 

front layer. The regions containing in the layer 

are labeled as positive examples (P) and the 

regions surround the layer are labeled as negative 

examples (N). 

sliding window

color histogram

P

N



which means that the selective function f is defined as: 
1 ( )

( )
0

r

Dist r
f f r

otherwise
    (9) 

Various numbers of regions can be selected from different 

appearances of objects.  

4.2. Occlusion probability 

The occlusion probability of a region should be higher if 

it is close to another front layer. Formally, if two layers 
1L  and 2L  are close enough, which means the distance 

between the two locations 1 2L L , we define the 

occlusion probability of a region r in the 1L  using the 

nearest Gaussian distance: 
2

22
1

2

nei r

rO e ,   (10) 

where nei is the closest region in the layer 2L  to the 

region r. The distance nei r  is denoted as the distance 

between the centers of the two regions. The variance  is 

related to the predicted moving speed of the object. Now, 

we can compute the confidence of each region using Eq. 

(7). 

5. Tracking objects using region confidences 

In order to illustrate the proposed idea without losing 

generality, we integrate the proposed online learning 

mechanism into the mean-shift algorithm [11]. That is, 

we track objects using spatial-biased color histogram as 

the appearance feature for each object. The bias is 

computed on the basis of the region confidences. Given a 

layer L and its region confidences tC  the tracking of the 

layer L in a subsequent frame can be described as the 

following three iterative steps: 

Table 1 Tracking algorithm with region confidence 

1. Compute a bias for each position in the layer L using 

a specific bias model; 

2. Compute spatial-biased color histogram of the latest 

appearance of the layer L using the biases; 

3. Track the layer L using spatial-biased color 

histogram in the new frame; 

Traditional color histogram-based algorithms, as we used 

in the Section 4, consider each pixel as the same weight 

or radial weights. The spatial-biased color histogram 

calculates the color distribution of a region with different 

bias at each pixel. We model this bias over an object area 

as the combination of the learned regions confidences. 

Three different bias models are presented here. 

5.1. Single focus model (SFM) 

A human vision system tends to have one focus at a time. 

Accordingly, we would like our model to focus on only 

one point at a time. The bias reduces as distance increases 

from the focus. Let ( )Loc t  be denoted as the relative 

center location of the region T of a front layer L. We 

define the focus F(L) as the average location of the 

centers of all local regions weighted by their confidences: 

, 1

, 1

1
( ) ( )

i

i

i

i

P

t iP
t L i

t
t L i

F L C Loc t

C

.  (11) 

We model the weights of relative positions in the layer as 

a Gaussian distribution in which higher weights are given 

to the position close to the focus. For each position x in 

the layer L, the bias of x is taken from: 

( ) ( ), sw x N F L .   (12) 

The single focus model is very robust to occlusions 

because only one local part of the object needs to be 

tracked. However, the focus may sometimes fall into a 

region that has very low confidence due to the averaging 

step. This usually happens when many high-confidence 

regions surround a region with low confidence. To 

address this problem, we propose a multi-focus model. 

5.2. Multi-focus model (MFM) 

The multi-focus model works like the vision systems of 

bees or other insects, which have many simple eyes 

working together. We create a multi-focus model using a 

Gaussian mixture model, in which each local region with 

non-zero attention is modeled as a Gaussian distribution. 

Following the definitions in the last section, the weight of 

a position x in the layer L can be computed as: 
2

2

( )

2

, 12

, 1

1
( )

2

i

m

i

i

i

i

x Loc t
P

tP
t L i

m t
t L i

w x C e

C

.  (13) 

5.3. Multi-focus template (MFT) 

The third focus model we propose is a template. We 

simply put a threshold  on the attention of the local 

regions, and give each pixel in threshold regions an equal 

weight. Formally, the bias of a position x in the layer L is: 

&
( )

0

tx t C
w x

otherwise
,  (14) 

where  takes the value that keeps the sum of the bias of 

all positions into 1. 



6. Experiments 

We first compared the matching distance distribution with 

and without using region confidence. The matching 

distances are computed around the manually labeled 

ground truth. To show the values at all possible locations, 

we perform a full search, though in practice no tracking 

algorithm will really search so many locations. Figure 5 

shows matching distance distributions computed for 

tracking three objects. We reverse the distance values so 

that the centers can be seen in 3D surfaces. In each 

example we extract 35 P regions and 18 N regions for 

confidence learning. 

Example (1) 

Radial bias E=389 SFM E=510

MFM E=495 MFT E=620

Example (2) 

Radial bias E=296 SFM E=442 

MFM E=693 MFT E=2227 

Example (3) 

Radial bias E=233 SFM E=276 

MFM E=269 MFT E=1047 

Figure 5 Three examples (in columns) of matching 

distance (reversed for display) distributions computed 

around the ground truth locations in tracking. In each 

example, we report the results by using different bias 

from left to right: conventional radial, single-focus 

model, multi-focus model, and multi-focus template. 

(Different examples may use different color ranges) 

The evaluation value E is derived from the Eq. (6), with 

the biased color histogram. 

0

2
E D D .    (15) 

In the first example, we are tracking a small object 

(30x12 pixels) that is occluded by another object. The 

MFT has the best chance to provide correct tracking 

according to the E value. However, the distributions of 

the four methods look very similar. The second example 

is obtained by tracking a bigger object (90x36 pixels) in 

front of a background that contains similar colors. The 

MFT shows not only the best E value but also a smooth 

distribution. The MFM also performs better than the other 

two models in this case. The object we tracked in the 

third example has similar size to the second one but with 

a rather simple background. The MFT provides the best E

value and also a sharper distribution.  

To demonstrate the advantages of the proposed tracking 

approach, we present 2 tracking examples with occlusions 

and complex backgrounds.  



Mean shift with radial model 

Single focus model (SFM) 

Multi-focus model (MFM) 

Multi-focus template (MFT) 

Figure 6 An example of a long period occlusion. The standard 

mean shift algorithm and MFM missed the accurate locations 

of the person and merged the two people together during the 

occlusion period. The SFM and MFT provided more robust 

tracking. We display the regions with non-zero confidences 

for the proposed models.

The first example presents the challenge of tracking a 

person occluded for a long period of time by another 

person in a corridor. Unlike a short-time occlusion caused 

by two objects moving across each other, the occlusion in 

this example is caused by a 540-frame-long, close body 

contact (such as hand shaking and hugging) within an 

1140-frame-long interaction between the two people. The 

video has 30 frames per second with 360x240 pixels per 

frame. Motion models cannot easily predict the location 

of the person because he has three different motion 

patterns in this example: walking quickly to the other 

person, very small motion during the greeting, and 

walking back slowly back to where he began. Figure 6

presents the tracking results of using the standard mean-

shift algorithm and the mean-shift algorithms with the 

proposed attention models (no background subtraction 

has been used.) 

The most different results are the scales of the person in 

the 5th and the 6th frames. The standard mean-shift 

algorithm can correctly track the person at the very 

beginning of the encounter, but soon makes a typical 

error of merging the two persons as one object. After 

using the single focus model in the mean-shift algorithm, 

we obtain a more accurate location for the person during 

the encounter. The multi-focus model makes the same 

tracking mistake as the standard mean-shift algorithm. 

The reason is that the tracked person is small and it is 

difficult to tune the variance m  in Eq. (16). If the 

variance is too small, the feature does not have enough 

discriminative power. A large variance leads to a very flat 

attention distribution, and achieves a similar tracking 

result to the standard mean-shift. The multi-focus 

template does not have this difficulty with size, and 

obtains accurate tracking results. We display the regions 

with high confidences in the multi-focus results. The 

locations of these regions further illustrate how the high 

confidences shift in the occlusion. 

Mean-shift with radial model 

Multi-focus template (MFT) 

Figure 7 Tracking in complex backgrounds using region 

confidences. The mean-shift algorithm lost objects because 

the background has similar colors. 

The second example, Figure 7, shows a tracking challenge 

with complex backgrounds. The standard mean-shift 

algorithm fails to track the person because the 

background has similar color to the object. By using 



region confidences, a mean-shift algorithm improved by 

the MFT can track the person in this case. 

The run cost of the region confidence learning is not very 

high compared to mean-shift tracking. It depends closely 

on how many regions are used in learning. As we used 

only 53 (35 P and 18 N) regions, we can track one object 

at 10 frames/second. 

7. Conclusions 

In this paper, we have presented an approach to exploit 

local region confidences for tracking objects against 

partial occlusions and complex backgrounds. In the 

proposed approach, object appearances are updated using 

KDE layers. We have discussed the estimation of the 

confidences of local regions of an object in the ideal case 

and proposed an online learning method to obtain the 

region confidences based on two factors: the 

discriminative power of the region in a feature space and 

the probability of being occluded. We have proposed a 

solution to model the discriminative power and region 

selection using matching distances between objection 

regions and neighborhood background. The probability of 

being occluded is characterized as a Gaussian on the 

distance between the object and other frontal layers. To 

make the region confidence mechanism open to state-of-

the-art tracking algorithms, we have proposed three 

special bias models to integrate region confidence 

information. We have evaluated the proposed region 

confidence learning and special bias models using the 

distribution of the matching distance in the feature space. 

Experiments have demonstrated the robustness of the 

integration of the proposed approach with the mean-shift 

tracking algorithm in tracking people against partial 

occlusions over a long period of time and backgrounds 

with similar colors.  

We have also compared the tracking performance of 

using three different bias models. Experiments have 

shown that, although some of them should theoretically 

perform better, in practice they may lead to worse results 

(for example, the MFM.)  Simpler models, such as the 

MFT and SFM, can gain more benefit from the spatial 

bias tracking approach. For the results of tracking 

multiple objects, please see the enclosed video. 

The proposed approach is easily integrated into other 

existing tracking methods as an improvement for 

occlusions and complex backgrounds. As an example, we 

have integrated it into a mean-shift algorithm by simply 

modifying the computation of the color histogram. We 

did not investigate temporal constraints on the translation 

of the spatial bias in consecutive frames, which might 

provide interesting knowledge to improve tracking. This 

will be our future effort. 
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