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Abstract. Social interaction plays an important role in our daily lives. It is 
one of the most important indicators of physical or mental diseases of aging pa-
tients. In this paper, we present a Wizard of Oz study on the feasibility of de-
tecting social interaction with sensors in skilled nursing facilities. Our study ex-
plores statistical models that can be constructed to monitor and analyze social 
interactions among aging patients and nurses. We are also interested in identify-
ing sensors that might be most useful in interaction detection; and determining 
how robustly the detection can be performed with noisy sensors. We simulate a 
wide range of plausible sensors using human labeling of audio and visual data. 
Based on these simulated sensors, we build statistical models for both individ-
ual sensors and combinations of multiple sensors using various machine learn-
ing methods. Comparison experiments are conducted to demonstrate the effec-
tiveness and robustness of the sensors and statistical models for detecting inter-
actions.  

1   Introduction 

The worldwide population over age 65 is expected to more than double from 357 
million in 1990 to 761 million by 2025 [17]. At present, five percent of Americans 
over age 65 reside in nursing homes, with up to 50 percent of those over the age of 85 
likely being placed in a nursing home at some point in their lives [13]. Among these 
nursing home residents, about 80% of them are believed to suffer from a psychiatric 
disorder, and 90% of patients with Alzheimer’s disease experience behavioral com-
plications leading to increased functional disability, medical morbidity, mortality and 
premature institutionalization [32]. In many nursing homes, physicians might visit 
their patients for only a short period of time once a week. Assessment of a patient’s 
progress is based mainly on reports from staff (nurses and nurse assistants). The re-
ports may be incomplete or even biased, due to schedule shift and the fact that each 
staff person has to take care of many patients. This may result in insufficient observa-
tion for monitoring either progressive change or brief and infrequent occurrences of 
aberrant activity for diagnosing some diseases. For example, dementia is very com-
mon among residents in nursing facilities. One obvious characteristic of dementia is a 
sustained decline in cognitive function and memory [24]. Studies indicate that the 
elderly with dementia may exhibit measurable agitated behaviors that increase confu-



sion, delusion, and other psychiatric disturbances [27][31]. In the early stages of de-
mentia, these agitated behaviors occur occasionally and only last a very short period 
of time and are frequently missed by caregivers. Therefore, a long-term observation 
and care become increasingly important for the elderly with dementia in nursing 
homes [9]. Although no widely accepted measure exists for dementia care environ-
ments [5], quantitative measures of daily activities of these patients can be very useful 
for dementia assessments.  

In this research, we are interested in automatically extracting information from sen-
sors for geriatric care applications within skilled-care facilities. We would develop a 
system that can automatically extract and classify important antecedents of psychoso-
cial and health outcomes. One such indicator is the frequency, duration and type of 
social interactions of the patients with one another and their caregivers. Interaction 
with others is generally considered a positive and necessary part of our daily life. 
Changes in interaction patterns can reflect mental and physical status of a person. 
Naturally, the level of social interaction of a person depends on a wide range of fac-
tors, such as his/her health condition, his/her personal preference, and aptitude for 
social interaction. More important, most social interactions are observable. This 
makes it possible for detecting them using an automatic system. 

This paper explores the feasibility of building such a sensor-based analyzer to de-
tect social interactions in a nursing home environment. Automatic detection of social 
interaction in a nursing home requires a set of physical and algorithmic sensors. For 
example, we can use an RF (Radio Frequency) sensor to track the location of each 
patient or a speech detector (an algorithm) from audio signals. However, the devel-
opment and deployment of physical and algorithmic sensors are not trivial tasks. Fur-
thermore, attaching physical sensors on bodies of patients is not practical. To this end, 
we employ a Wizard of Oz approach that enables the effectiveness study of various 
combinations of sensors and multiple models from a wide range of plausibly simu-
lated sensors. 

One important goal of this study is to obtain critical knowledge of detecting social 
interactions without physically developing and deploying ineffective or unnecessary 
sensors. This study also aims to find out the intrinsic structure among social interac-
tion events and answer the following questions: how to construct necessary sensors to 
analyze social interactions, and how far from building these sensors we are using cur-
rent technologies. Due to the fact that human beings infer interaction activities mainly 
from audio and visual cues, we are able to simulate potential useful sensors using the 
knowledge of human experts from audio and visual channels. Therefore, this study 
can be performed on the basis of long-term digital audio and video recording of a 
nursing home environment. We first evaluate the importance of each individual sen-
sor and then employ a variety of machine learning techniques to create statistical 
models to identify interactions between people using simulated sensor data.  

2.   Related work 

Social interaction consists of multiple individual human activities among multiple 
people. The work presented in this paper is closely related to location awareness and 



human activity analysis, which have been addressed by many researchers in different 
areas such as multimedia processing, pervasive computing, and computer vision.  

Various wearable sensors have been developed in recent years to address person 
tracking and activity analysis in the ubiquitous computing area. Global Position Sys-
tem [24], active bat location system [15], and PlusOn time modulated ultra wideband 
technology [34] provide location measures from meter to centimeter precision. Some 
wearable sensors have been applied to health monitoring [23], group interaction ana-
lysis [16], and memory augmentation [29].  

Elderly individuals are usually unwilling to adapt to even tiny changes in environ-
ment, including wearable sensors in their clothes. Some non-contact sensors are con-
sidered to be more practical in our task. Power line network [4] and Ogawa’s monitor-
ing system use switches and motion detectors to track human activities indoors. The 
data provided by switches and motion sensors are reliable and very easy to process. 
However, they cannot provide detailed information. For example, a motion sensor can 
only tell that there is a person in the monitored area but cannot tell the exact location. 

A vision-based system can non-obtrusively provide location information. Many 
computer vision algorithms have been developed for not only recovering 3D locations 
of a person, but also providing detailed appearance information of the person and 
his/her activities. Koile et al [21] at MIT proposed a computer vision system to moni-
tor the indoor location of a person and his/her moving trajectory. The Living Labora-
tory [20] was designed by Kidd, et. al. for monitoring the actions and activities of the 
elderly. Aggarwal, et. al. [1] has reviewed different methods for human motion track-
ing and recognition. Various schemes such as single or multiple camera schemes, and 
2D and 3D approaches, have been broadly discussed in this review.  

A large number of algorithmic sensors have been proposed to detect activities from 
audio and visual signals, including gait recognition [3], hand gesture analysis [11], 
facial expression understanding [10], sitting, standing and walking analysis [23], and 
speech detection [26]. Hudson, et. al examined the feasibility of using sensors and 
statistical models to estimate human interruptibility in an office environment [18]. 
These sensors are still mostly research challenges today, but can be potentially appli-
cable in the future. Combinations of these sensors for analyzing human behaviors 
have been applied in some constrained environment, such as meeting rooms [36] and 
sports fields [19]. 

 

  
Figure 1 Examples of interaction patterns in a nursing home. 

3.   Data collection and preprocessing 

Four cameras and four audio collectors were carefully placed in two rooms and a 
hallway of a nursing facility. Recording was performed from 9am to 5pm for 10 days. 



Overall, 320 hours were recorded at the nursing facility. Each video and its corre-
sponding audio channels were digitalized and encoded into an MPEG-2 stream in real 
time and recorded onto hard disks through a PC. The video data was captured and 
finally recorded in 24-bit color with a resolution of 640x480 pixels at 30 frames per 
second. The audio data was recorded at 16-bit 44.1KHz. Figure 1 illustrates some 
examples of interaction patterns from the data. In this paper, only the hallway videos 
are manually ground-truthed and used for analysis. 

Since we only focus on multi-person activities, we developed a preprocessing algo-
rithm to segment audio/video streams into shots, and classify the shots into three 
classes: non-activity, individual activity, and multi-person activity using audio and 
video event detection techniques.  

3.1   Video event detection 

For the video channel, we use a background subtraction algorithm to detect frames 
that contain human activities. To speed up this detection process, only video from one 
camera in the network is used. The background of a frame is obtained by the adaptive 
background method [33]. We employ a threshold to extract pixels that have high dif-
ferences between the current frame and its background. To remove noise, we group 
extracted pixels into regions and only keep those regions that contain more than 15 
pixels. We consider the frame f to contain a visual interaction event Vf=1 if any of the 
following rules is satisfied; otherwise Vf=0:  
1. There are two or more regions in the frame. 
2. There is region that does not touch the bottom the frame, whose width to height 

ratio is more than 0.7.  
We choose these thresholds to detect as many interactions as possible without in-

ducing excess false alarms. The output of the detection is reported every second. For a 
second of NTSC video, we output the percentage of visual cues in its 30 frames as: 
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3.2   Audio event detection 

To detect events using an audio stream, we use a very simple power-based method 
similar to the one proposed by Clarkson and Pentland in [6][7].  This method adap-
tively normalizes signal power to zero mean and unity variance using a finite-length 
window; segments where the normalized power exceeds some threshold are desig-
nated “events.” [6] and [7] describe an ambulatory system which could be exposed to 
arbitrary acoustic environments; adaptive normalization allows such a system to com-
pensate for unusually loud or quiet environments and still detect events reliably.  Our 
task differs from that system in that we have a stationary system where changes in 
power level really do indicate events and not just changes of venue. As such, instead 
of adaptive normalization, we use global normalization. That is, a single mean and 
variance is calculated for each two-hour recording and the globally-normalized power 
is threshold to detect events af.  



In this implementation, we extracted 16-bit mono audio from the audio-video 
stream, and used analysis windows 200ms in length with a 50% overlap. This window 
length results in a frame rate of 10 frames per second, which is more than adequate to 
detect events using the power-based approach. After signal power is calculated and 
normalized, it is passed through a simple 3-frame averaging filter for smoothing. We 
then apply the power threshold; any segment which exceeds the threshold is desig-
nated an event.  We also stipulate a minimum event time of 1 second in order to filter 
out isolated auditory transients. The confidence of audio event per second is defined 
as: 
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3.3   Fusing video and audio event detection 

Video and audio streams are synchronized and segmented into one-second non-
overlapping patches. The final event detection of each patch combines the video event 
confidence and audio event confidence linearly: 

avd CCC )1( αα −+=  
We consider a one-second patch to contain an interaction if its confidence Cd is higher 
than 0.5. 

To evaluate the preprocessing algorithm, we labeled 10 hours of video/audio data. 
Using only video detection, we extract 33.3% of the entire video as candidate interac-
tion shots, which is listed in Table 1. In order to not miss any interactions, we only 
filter out the one-second-long video segments with zero confidence. 

Table 1 Results of event detection from 
video. 

 Total Event 
Time  

Event Time as % 
of Total Signal 

No activity 13711 38.1% 
Individual 6700 18.6% 
Multi-person 15589 33.3%  

Table 2 Results of event detection from 
audio. 

Threshold Total Event 
Time 

Event Time as % 
of Total Signal 

1.1 6705 18.6% 
1.6 5582 15.5% 
2.1 4327 12.0%  

 
Using only audio detection with varying thresholds, we obtain the results listed in 

Table 2.  The table shows the total event time and percentage of data in the recordings 
using three thresholds.  

Table 3 Preprocessing results based on the ground-truth. 

 Recall Precision Process speed 
Video 98% 13% real time 
Audio 71% 28% 10% real time 
Multimodal 92% 21%  

By fusing the audio (threshold 1.6) and video results, we extracted total 9435 sec-
onds from the entire 10 hours data. In this way, 85 our of 91 interactions in the ground 
truth are covered by the candidate shots, which obtain reasonable recall and precision 



in terms of event time as listed in Table 3. The audio has a lower recall due to the 
presence of silent interactions such as walking assistance of a wheelchair-bound pa-
tient. The audio precision is actually higher in general than is reported here. The hall-
way environment is a poor representative of audio precision, as many events that are 
audible in the hallway are off-camera and not in the ground-truth labels; thus audio 
event detection generates many false alarms.  Even so, our results show that by fusing 
audio and video results, we can achieve more than 90% recall and 20% precision.  We 
project even better precision when we test our fused system over the entire set of the 
data. The multi-person activity shots are then manually labeled using events selected 
by a group of doctors. Our study focuses on detecting interactions in multi-person 
activities, since social interaction is mutual or reciprocal action that involves only two 
people.  

4.   Sensor simulation 

A sensor is usually defined as a device that receives a signal or stimulus and re-
sponds to it in a distinctive manner. As we mentioned in the introduction, we consider 
both physical and algorithmic sensors in this study. For example, in order to investi-
gate the temporal referencing probability of detecting an interaction, we consider 
“temporal interaction reference” as an algorithmic sensor, which is a detection result 
of another 1-second interval related to the current interval. On the other hand, to re-
duce number of candidate sensors, we omit some sensors that are impossible to im-
plement from current technologies, such as speech recognition and facial expression 
understanding. There are some compromises between the technology capability and 
the medical request. We keep some sensors, for instance “hand trembling”, which are 
very important for human experts but are questionable for real implementation. In 
detail, we select 21 events from the Pittsburgh Agitation Scale, which are listed in 
Table 4 and their occurrences in temporal neighborhoods as simulated sensors: 

Table 4 Sensors defined on events and temporal neighborhood. 
Approaching Leaving - 5s 
Standing Hand trembling - 4s 
Talking Pushing a wheelchair - 3s 
Shaking hands Passing - 2s 
Hand touch body slowly Sitting - 1s 
Hand touch body normally Walking   0s 
Hand touch the body quickly Hand in hand + 1s 
Hugging Kiss + 2s 
Face turning Kick + 3s 
Walking (moving) together Sitting down + 4s 
Temporal interaction reference 

× 

+ 5s 

= Sensors 
 

 
We label each shot second by second. The range of the temporal neighborhood is 

chosen from 5 seconds ahead to 5 seconds behind the current one. Overall we ob-
tained 230 (21×11-1) simulated sensors, including 21 events times and 11 temporal 
neighbors, except the “temporal interaction reference (T-reference)” in the current 



interval, which is not considered as a sensor. All the sensors are labeled as binary 
events since there is no ambivalent in human experts’ judgments during the labeling. 
We can see that one-second recording content may contain more than one direct or 
derived event detected by the simulated sensors.  

To know which sensors would be most useful, we first analyze the effectiveness of 
individual sensors in detecting social interactions. The first measure that we use to 
study individual sensors is information gain [30]. Information gain indicates the po-
tential power of each sensor in predicting an interaction. The details of how this tech-
nique works will not be covered in this paper. Table 5 lists top 28 sensors selected by 
information gain with respect to a correct prediction of a social interaction. 

Table 5 Top 28 sensors selected by information gain technique. 

1 T-reference-1 8 Walking 0 15 Talking-2 22 Approaching+1 
2 T-reference+1 9 T-reference-5 16 Walking+2 23 Walk together 0 
3 T-reference-2 10 T-reference+4 17 Talking-3 24 Walking+3 
4 T-reference+2 11 Walking+1 18 Talking+2 25 Talking-5  
5 T-reference-3 12 Walking-1 19 Approaching 0 26 Approaching-1 
6 T-reference+3 13 T-reference+5 20 Walking-2 27 Talking+3 
7 T-reference-4 14 Talking+1 21 Talking-4 28 Leaving 0 

The table shows that the T-reference of an interaction has obvious temporal consis-
tency. Most interactions take longer than one second, and this consistency information 
is so important that it occupies the top 7 ranks with respect to the information gain 
scores. 

Besides the temporal consistency, it also shows that the sensors of walking and 
talking are very important cues associated with an individual person; and relative lo-
cation, such as approaching, leaving, walking together, and hand gesture are impor-
tant between two persons. These sensors are important even in our daily experience. 
However, some sensors, such as “hand normal” and “pushing”, which are also obvi-
ous evidence of an interaction, have very low ranks in information gain. They are 
either co-occurrences with some high rank sensors or omitted by the information gain 
technique due to their small number of examples. 

Information gain takes an empirical risk to rank the sensors, which can be biased 
when training samples are redundant in some interaction patterns. For example, a long 
sequence of standing conversation will lead to higher ranks for talking and standing 
than that of a short sequence. It tends to omit the sensors with small numbers of ex-
amples in the training set, even though these sensors are very powerful in predicting 
social interactions. To avoid this kind of bias, we also analyze the power of each sen-
sor using a structural risk based support vector machine (SVM) method [2]. This 
method trains an SVM using a subset of the training set from all sensors, and then 
eliminates sensors with low weight in representing the decision hyper-plane. Because 
the decision hyper-plane is trained to maximize the margin between the closest posi-
tive support vectors and negative support vectors, repeated patterns in the training set 
don’t affect the result. Therefore, it is robust to the training set which contains a bi-
ased number of training examples for different sensors. 

Table 6 lists the top 28 sensors selected by the SVM method. These 28 sensors 
cover most events in our total 21 events. Only “sitting” and “passing” are not in-
cluded. This selection is more reasonable since the high rank sensors, such as “walk- 



Table 6 Top 28 sensors selected by SVM. 

1 T-reference+1 8 Pushing+4 15 Pushing-3 22 Face turning 0 
2 T-reference-1 9 Hand in hand 0 16 Walking+2 23 Walk together 0 
3 Walk together 0 10 Kick 0 17 Face turning+1 24 Shaking hand+5 
4 Hand normal 0 11 Hand slow 0 18 Approaching 0 25 Pushing+3  
5 Talking 0 12 Hand-trem 0 19 Pushing-4 26 Hug+2 
6 Pushing 0 13 T-reference-2 20 Hand normal+3 27 Standing+2 
7 Talking+1 14 Leaving 0 21 Walk together+4 28 T-reference+2 
together”, “hand touch body normally”, “talking”, and “pushing”, are obvious evi-
dence of an interaction. The sensors with the top 2 ranks are still “T-reference” in the 
closest neighborhoods. This indicates that the 1-second interval is small and precise 
enough for analyzing social interactions in a nursing home environment. In compari-
son with the information gain results, the sensor “talking” is a common important 
sensor selected by both methods. The “walking” sensor is replaced by “walk together” 
and “pushing”. They all overlap the sensor “walking”, but provide more specific in-
formation. Hand related sensors are also ranked higher, which indicates that social 
interaction may benefit from developing better hand analysis sensors. 

Temporal information is included in our simulated sensors. We evaluated the effec-
tiveness of temporal orders by averaging the two selection results together and com-
puting the histogram of the temporal orders. Figure 2 illustrates the effectiveness of 
temporal order in detecting social interactions. 
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Figure 2 Effectiveness of temporal order. 

The effectiveness of the temporal order drops quickly as the time span from the 
current time increases from zero. The effect of events more than 3 seconds away from 
the current one is very limited and can provide little useful information for analyzing 
social interactions. Sensor selection only analyzes the effectiveness of individual sen-
sors; in the next section we will investigate the power of combinations of sensors us-
ing statistical models. 

5.   Detection models 

It should be noted that there are some overlaps among simulated sensors, e.g., 
“walking together” implies “walking”. The first goal of this section is to explore 
proper statistical models to detect social interactions. We consider that the detection 
of a social interaction is a binary classification problem: interaction and non-
interaction. The other goal of this section is to further investigate the associations be-



tween different sensors. This will enable us to replace some impracticable sensors 
with combinations of sensors that can be more easily developed. Since we have con-
sidered including temporal information in the simulated sensors, the interaction detec-
tion problem can be simplified as a problem to classify the sensor outputs of each 1-
second interval into two classes, indicating interaction and non-interaction respec-
tively.  

To find a proper model for classifying interactions, we evaluated various machine 
learning algorithms: decision tree [28], naive Bayesian [22], Bayes network [17], lo-
gistic regression [14], support vector machine [35], adaboost [25], and logitboost [12]. 
We will not describe details of these algorithms in this paper; interested readers can 
find these details in the references. 

The evaluations are shown in Table 7. We use equal size training and testing data. 
Standard 5-fold cross-validation is performed to find optimal parameters for each 
model. We then perform the resulted optimal models on the testing set to report the 
numbers in Table 7. 

Table 7 Performance of interaction detection using different models. 

 With T-reference Without T-reference 
Model Prec. Recall F-measure Prec. Recall F-measure 
Decision tree 99.5% 99.2% 99.3% 97.1% 96.4% 96.8% 
Naive Bayesian 98.4% 92.9% 95.6% 96.3% 90.1% 93.1% 
Bayes network 98.4% 93.0% 95.6% 96.3% 90.4% 93.3% 
Logistic reg. 99.6% 98.7% 99.2% 96.5% 94.5% 95.5% 
SVM 99.5% 99.5% 99.5% 98.0% 95.1% 96.5 
adaboost 99.7% 99.1% 99.4% 95.4% 93.9% 94.6% 
logitboost 99.7% 99.1% 99.4% 96.0% 95.6% 95.8% 

 
We can see that under the ideal conditions (all sensors output correct result without 

any ambiguity), all these models obtain good detection results. To our surprise, the 
simplest method, decision tree, employs only four kinds of sensors: “T-reference”, 
“talking”, “walking”, and “leaving”, but achieves very good performance. None of 
these sensors except “T-reference” requires complex visual and audio analysis in 
comparison to sensors such as “face turning” and “hand in hand”. It seems possible 
that social interaction can be detected by just developing good “talking”, “walking”, 
and “leaving” sensors. It is true if the “T-reference” sensor can be successfully de-
rived from these three kinds of sensors. 

To remove the effect of the temporal information of the derived sensor “T-
reference”, we assume that the “T-reference” sensor is not available to its neighbors. 
We remove all “T-reference” sensor outputs from feature vectors and evaluate the 
above methods. The results are also listed in Table 7. After removing the “T-
reference” sensor, the performance drops about 3-5%, which indicates that we can 
achieve around 90% accuracy in detecting current interaction with the temporal in-
formation of interaction decisions in neighborhoods. As we assume outputs of other 
sensors are under ideal conditions, the real accuracy of the current “T-reference” sen-
sor output is expected to be about 90% of the average accuracy of all the other sen-
sors’ outputs. The decision tree still achieved the best performance even without the 
“T-reference” sensors. However, the resulting decision tree includes all kinds of sen-
sors. The top 10 sensors are:  



Rank Sensor Rank Sensor 
1 Talking 6 Hand in hand 
2 Walk together 7 Standing 
3 Walking 8 Leaving 
4 Pushing 9 Approaching 
5 Hand normal 10 Passing 

A drawback of the decision tree is that it is sensitive to the noise in sensor outputs. 
In practice, outputs of sensors might be ambiguous or even incorrect. Some of the 
sensor outputs have to be represented by probabilities, e.g., 60% “talking” or 30% 
“hand in hand”. The uncertainties of sensor outputs can only be determined from real 
data of experiments. What we can do in a simulation is to add some noise into outputs 
of sensors. Table 8 lists results of adding 20% noise (20% sensors have wrong out-
puts) into the data without “T-reference” sensors.  

Table 8 Performances of interaction detection using different models with 20% 
noise. 

Model Prec. Recall F-measure 
Decision tree 90.0% 90.4% 90.2% 
Naive Bayesian 88.6% 75.3% 81.4% 
Bayes network 88.1% 77.6% 82.5% 
Logistic regression 90.1% 93.5% 91.8% 
SVM 91.4% 95.3% 93.3% 
adaboost 89.6% 93.8% 91.6% 
logitboost 90.1% 95.6% 92.8% 

 
The performance of the decision tree decreases from 96.8% (F-measure) to 90.2%, 

or loses 6.6% accuracy. At the same time, the performance of the SVM model de-
creases from 96.5% to 93.3%, or only loses 3.2% accuracy. Notably, the recall of the 
SVM only decreases 0.5% with 20% noise. The logitboost model also proved to be 
robust against noise; the recall remains the same after adding noise. The F-measure 
loses only 3% accuracy. This indicates that the SVM model is potentially more robust 
than the decision tree model in real applications. 

It should be noted that the noise level of 20% is an empirical assumption. Real sen-
sors will have different accuracies. According to our preliminary implementations of 
some real sensors, walking related sensors introduce around 15% noise on average, 
the “standing” sensor only has 6% noise, the “talking” sensor produces about 30% 
noise, and face and hand related sensors are still under development. If the noise 
range of face and hand related sensors are 40%-60%, 20% noise on average for all 
sensors is reasonable.  

6.   Conclusions 

This paper presents a study of feasibility of sensor-based analysis of social interac-
tion patterns in a skilled nursing facility. We have analyzed the capabilities of various 
individual sensors for detecting social interactions. The relative location related sen-



sors, hand related sensors, talking sensors, and temporal consistency information are 
ranked high priorities in the task of detecting interactions.  

We have also compared various statistical models to explore overlapped spaces of 
multiple sensors. The experimental results have indicated that the decision tree model 
could achieve more than 99% accuracy with only three kinds of sensors: “talking”, 
“walking”, and “leaving”, plus temporal information under noise free conditions. This 
indicates the possibility of achieving good interaction detection performance by de-
veloping perfect “talking”, “walking”, and “leaving” sensors, instead of developing 
complex ones, such as face and hand gesture sensors. We also demonstrated the ro-
bustness of various models when noisy sensors are considered. The SVM model and 
the logitboost model have been proven to be more robust against noise than other 
models. Based on the promising results from this study, we will develop working sys-
tems with real sensors. We will further classify social interaction patterns and evalu-
ate those systems and algorithms. 
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