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Abstract
Interest within the automatic speech recognition (ASR) research
community has recently focused on the recognition of speech
captured with a microphone located in the medium field, rather
than being mounted on a headset and positioned next to the
speaker’s mouth. The capacity to recognize such speech is a
primary requirement in making ASR a viable modality for so-
called ubiquitous computing. This is a natural application for
multiple microphones whose signals can be combined in dif-
ferent ways: On the signal side, combination can be accom-
plished by beamforming techniques using a microphone array
or by blind source separation. On the word hypothesis side,
combination can be achieved through confusion network com-
bination. In this work, we compare the effectiveness of the sev-
eral combination techniques, and compare their performance to
that achieved with a close talking microphone.

1. Introduction
Interest within the automatic speech recognition (ASR) re-
search community has recently focused on the recognition of
speech captured with a microphone located in the medium field,
rather than being mounted on a headset and positioned next to
the speaker’s mouth. Using a combination of microphones can
improve the performance with respect to a single microphone.
To combine the multiple sources we can identify two main ap-
proaches: on the signal side, through beamforming techniques
using a microphone array (MA) or blind channel combination
(BCC); or on the word hypothesis side through confusion net-
work combination (CNC).

In this work, we present a variety of ASR results using dif-
ferent types of microphones and their combinations with the
aforementioned techniques. The speech corpus used for the ex-
periments reported here was collected as part of the European
Commission integrated project CHIL [1], Computers in the Hu-
man Interaction Loop, which aims to make significant advances
in the fields of speaker localization and tracking, speech activity
detection and distant-talking ASR. The corpus is comprised of
lectures and oral presentations collected by both near and far-
field microphones. In addition to the audio sensors, the semi-
nars were also recorded by calibrated video cameras. This si-
multaneous audio-visual data capture enables the realistic eval-
uation of component technologies as was never possible with
earlier data bases. One of the long-term goals of the project is
to develop the ability to recognize speech in a real reverberant
environment, without any constraint on the number or the distri-
bution of microphones in the space nor on the number of sound
sources active simultaneously. This problem is surpassingly dif-
ficult, given that the speech signals collected by a given set of

microphones are severely degraded by both background noise
and reverberation. Moreover, the speech material is inherently
challenging for several reasons: Lecture speech varies widely in
speaking style as compared to read speech and contains spon-
taneous events as well as hyper-articulation effects [2]. Moreo-
ever, the corpus contains mainly non-native speakers of English,
some of whom are not even fluent in English.

The remainder of this works is organized as follows. Sec-
tion 2 describes the development of a baseline system at the
Universität Karlsruhe (TH). Section 3 gives a short description
of the data collection and labeling. Finally, Section 4 reports
the results, conclusions and plans for future work of the speech
recognition experiments.

2. Baseline System
The CHIL seminar data present significant challenges to both
modeling components used in ASR, namely the language and
acoustic models. With respect to the former, the currently avail-
able CHIL data primarily concentrates on technical topics with
a focus on ASR research. The speech material is very special-
ized with many technical terms and acronyms; hence, the lan-
guage modeling corpora typically used in the ASR literature
are ill-suited to this particular ASR task. Due to the interac-
tive nature of the seminars and the varying degree of the speak-
ers’ comfort with their topics, large portions of the data are
characterized by spontaneous, disfluent, and interrupted speech.
Moreover, the seminar speakers exhibit moderate to heavy Ger-
man or other European accents in their English speech. These
problems are compounded by the fact that, at this early stage of
the CHIL project, not enough data is available for training new
language and acoustic models for the seminar task. Thus one
has to rely on adapting existing models that exhibit gross mis-
match to the CHIL data. Clearly, these challenges present them-
selves in both close-talking microphone data, as well as the far-
field data captured using the MAs and table-top microphones,
where of course they are exacerbated by the poorer quality of
the acoustic signal.

For the experiments reported here, a test set containing
16,395 words was chosen from five seminars, providing a to-
tal of approximately 130 minutes speech material.

2.1. Language Model Training

To train language models (LM) for interpolation we used cor-
pora consisting of broadcast news (160M words), proceed-
ings (17M words) of conferences such as ICSLP, Eurospeech,
ICASSP or ASRU and talks (60k words) by the Translanguage
English Database. Our final LM was generated by interpolat-
ing a 3-gram LM based on broadcast news and proceedings, a
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class based 5-gram LM based on broadcast news and proceed-
ings and a 3-gram LM based on the talks. The perplexity is 144
and the vocabulary contains 25,000 words plus multi-words and
pronunciation variants.

2.2. Acoustic Model Training

The speech recognition experiments described below were con-
ducted with the Janus Recognition Toolkit (JRTk), which was
developed and is maintained jointly by the Interactive Systems
Laboratories at the Universität Karlsruhe (TH), Germany and at
the Carnegie Mellon University in Pittsburgh, USA.

As relatively little transcribed data is available for acoustic
model training, the acoustic model used in the experiments re-
ported here was trained on the Broadcast News [3] corpora and
merged with the close talking channel of several meeting cor-
pora [4, 5]. A total of 300 hours of speech material were used
for system training.

The speech data was sampled at 16kHz. Speech frames
were calculated using a 10 ms Hamming window. For each
frame, 13 Mel-Minimum Variance Distortionless Response
(Mel-MVDR) cepstral coefficients were obtained through a
discrete cosine transform from the Mel-MVDR spectral enve-
lope [6]. Thereafter, linear discriminant analysis was used to
reduce the utterance based cepstral mean normalized features
plus 7 adjacent to a final feature number of 42. Our baseline
model consisted of 300k Gaussians with diagonal covariances
organized in 24k distributions over 6k codebooks.

2.3. Acoustic Adaptation: Close Talking Speech

The adaptation of the close talking acoustic model was done in
three consecutive steps:

1. A supervised Viterbi training of the CHIL adaptation
speakers followed by a maximum a posteriori (MAP)
combination of this model with the acoustic model of the
original system: To find the best mixing weight, a grid
search over different mixing weights was performed.
The weight, which reached the best likelihood on the hy-
potheses of the first pass of the unadapted speech recog-
nition system, was chosen as the final mixing weight.

2. A supervised maximum likelihood linear regression
(MLLR) in combination with feature space adaptation
(FSA) and vocal tract length normalization (VTLN) on
the close talking CHIL development set: This step adapts
to the speaking style of the lecturer and the channel. In
the case of non-native speakers the adaptation should
also help to cover some ’non nativeness’.

3. A second, now unsupervised MLLR, FSA and VTLN
adaptation based on the hypothesis of the first recogni-
tion run: this procedure aims at adapting to the particu-
lar speaking style of a speaker and to changes within the
channel.

2.4. Acoustic Adaptation: Far Field Speech

The adaptation of the far distance acoustic model was done in
three consecutive steps:

1. Four iterations of Viterbi training on far distance data
from NIST [7] and ICSI [8] over all channels on top of
the acoustic trained models to better adjust the acoustic
models to far distance.

2. A supervised MLLR in combination with FSA and
VTLN on the far distance (single distance or MA

processed) CHIL development set: This step adapts to
the speaking style of the lecturer and the channel (in par-
ticular to the room reverberation). In the case of non-
native speakers the adaptation should also help to cover
some non-native speech.

3. A second, now unsupervised MLLR, FSA and VTLN
adaptation based on the hypothesis of the first recogni-
tion run: this procedure aims at adapting to the particu-
lar speaking style of a speaker and to changes within the
channel.

2.5. Signal Combination: Beamforming

A basic ingredient of classic beamforming techniques is the
speaker location. Hence, to apply such techniques, a source lo-
calization algorithm is required.. The source localizer used for
the experiments reported in Section 4 is based on the estima-
tion of time delays of arrival (TDOA) with the phase transform
(PHAT) [9],
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The estimated TDOA τ̂ i(t) is that which maximizes R12(τ).
This estimate is then compared to the predicted TDOA, given
by

Ti(x) = T (mi1,mi2,x) =
‖x − mi1‖ − ‖x − mi2‖

s
(3)

where mi1 and mi2 are the positions of the microphones in
the i-th microphone pair, x is the speaker location, and s is the
speed of sound. The estimated speaker location is then that x
which minimizes the squared error criterion

ε(x) =
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i=0

1

σ2
i

[τ̂ i − Ti(x)]2 (4)

Klee et al [10] propose an algorithm whereby (4) is recursively
minimized with a variation of a Kalman filter to effectively track
a moving speaker.

In this work, we used a simple delay and sum (D&S) beam-
former implemented in the subband domain. Subband analysis
and resynthesis was performed with a cosine modulated filter
bank (CMFB) [11, §8]. In the complex subband domain, beam-
forming is equivalent to a simple inner product

y(ωk) = vH(ωk)X(ωk)

where ωk is the center frequency of the k-th subband, X(ωk) is
the vector of subband inputs from all channels of the array, and
y(ωk) is the beamformed subband output. The speaker position
comes into play through the array manifold vector [12, §2]

vH(ωk) =
�
ejωk∆0(x) ejωk∆1(x) · · · ejωk∆N−1(x)

�

where ∆i(x) = ‖x − mi‖/s is the propagation delay for the
i-th microphone located at mi.



2.6. Signal Combination: Blind Channel Combination

The channel combination techniques seek to separate the voice
of a single speaker from the background noise and room re-
verberation, and thereby to improve the signal quality and con-
comitant recognition accuracy. One way to address this prob-
lem is blind source separation, for which several approaches
have been proposed in the literature [13]. Assuming that the
speech on all microphones is correlated while at least some of
the noise is uncorrelated, we can simply time shift each channel
by its delay with respect to a reference channel, sum together all
shifted channels, then divide the sum by the number of channels
N to improve the signal-to-noise ratio. This leads to a very sim-
ple yet effective means for combining the several channels; in
future, we hope to investigate more elaborate blind techniques
that have appeared in the literature. To estimate the TDOA, we
can maximise (1). To improve the estimate of the TDOA under
realistic conditions where correlated noise is present we have
subtracted the cross-correlation of the averaged noise where N1

and N2 is estimated at the time no speech is present [14]:

G(ω) = Gx1,x2(ω) − N1(e
jωτ )N∗

2 (ejωτ )

|N1(ejωτ )N∗
2 (ejωτ )| (5)

2.7. Text Combination: Confusion Network Combination

Confusion networks reduce the complexity of lattice representa-
tions to a simpler form that maintains all possible paths through
the lattice, but transforms the space to a series of slots, each of
which contains either a word hypothesis or a null arc, and an
associated posterior probability. By combining the hypotheses
or lattices of the same time segment of recognition runs on dif-
ferent microphones into a single word confusion network the
networks can be used to optimize the WER over different mi-
crophones by selecting the word with the highest probability in
each particular slot [15].

3. Data Collection and Labeling
The data used for the experiments described in this work was
collected during a series of seminars held by students and vis-
itors at the Universität Karlsruhe (TH), in Karlsruhe, Germany
in November, 2004. The students and visitors spoke English,
but mainly with German or other European accents, and with
varying degrees of fluency. This data collection was done in a
very natural setting, as the students were far more concerned
with the content of their seminars, their presentation in a for-
eign language and the questions from the audience than with
the recordings themselves. Moreover, the seminar room is a
common work space used by other students who are not sem-
inar participants. Hence, there are many “real world” events
heard in the recordings, such as door slams, printers, ventilation
fans, typing, background chatter, and the like.

The seminar speakers were recorded with a Sennheiser
close-talking microphone (CTM), a 64-channel Mark III MA
developed at the NIST (National Institute of Standards and
Technologies) mounted on the wall, four T-shaped MAs with
four elements mounted on the four walls of the seminar room
and three Shure Microflex table-top microphones located on the
work table where the position was not fixed. A diagram of the
seminar room is shown in Figure 1. All audio files have been
recorded at 44.1 kHz with 24 bits per sample. The high sam-
ple rate is desireable to permit more accurate speaker position
estimation, while the higher bit depth is necessary to accommo-
date the large dynamic range of the far field speech data. For
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Figure 1: The CHIL seminar room layout at the Universität
Karlsruhe (TH).

the recognition process, the speech data was down-sampled to
16kHz with 16 bits per sample. In addition to the audio data
capture, the seminars were simultaneously recorded with four
calibrated video cameras with a rate of 15 frames per second.

The data from the CTM was manually segmented and tran-
scribed. The data from the far distance microphones was la-
beled with speech and non-speech regions. The location of the
centroid of the speaker’s head in the images from the four ca-
librated video cameras was manually marked every 0.7 second.
Based on this marks the true position of the speaker’s head in
three dimensions could be calculated within an accuracy of ap-
proximately 10 cm [16].

4. Speech Recognition Experiments
All tests used the language and acoustic models described above
for decoding. Even though the techniques to combine multiple
microphones in our approach are very simple, by comparing
the WER of Table 1 we see a significant gain by using multi-
ple far distance microphones over a single distance microphone
for three different types of combination; namely the use of MA
processing, BCC and CNC. The disadvantage of the MA is that
the speaker position has to be known. An estimate of this know-
ledge compared to the true speaker position results in a decrease
in WER of 2.2%. Using a MA with an estimated speaker posi-
tion over a single channel we gain back 26.9% of the accuracy
compared to the CTM. In BCC and CNC no knowledge of the
microphones geometry and speaker position has to be known.
The BCC is a very simple technique while the latter has to use
recognition runs on every single microphone which is very time
consuming. Nevertheless, these two approaches are good meth-
ods to combine the table-top microphones as their signal quality
is nearly equal. For the T-shaped microphones these two ap-
proaches fail to improve the performance over the best channel
as the variance over the different channels is high, in partic-
ular as channel one is much better than the three other chan-
nels. Therefore, selecting only good channels could improve
the overall performance.

The best performance was reached by beamforming the MA
data, blindly combining all table top microphones, blindly com-
bining a single microphone from every T-array and combining
the three recognition runs by confusion networks. The blind
channel combination of all microphones from the T-arrays is



WER
34.0%

single microphone (mic. 1) 62.4%
single microphone (mic. 2) 61.7%
single microphone (mic. 3) 62.2%
blind channel combination 59.3%
confusion network combination 61.0%

single microphone (array 1) 60.9%
single microphone (array 2) 64.8%
single microphone (array 3) 66.5%
single microphone (array 4) 66.1%
blind channel combination 62.4%
confusion network combination 61.8%

single microphone 66.5%
estimated position of the speaker 58.0%
true position of the speaker 55.8%

table-tops (CNC) & T-arrays (CNC) 59.8%
table-tops (BCC) & T-arrays (BCC) 59.7%
table-tops (CNC) & array (estimated) 59.3%
table-tops (CNC) & array (true) 59.2%
table-tops (BCC) & array (estimated) 56.9%
table-tops (BCC) & array (true) 55.7%
T-arrays (CNC) & array (estimated) 60.3%
T-arrays (CNC) & array (true) 60.2%
T-arrays (BCC) & array (estimated) 58.0%
T-arrays (BCC) & array (true) 57.0%
table-tops, T-arrays (CNC) & array (estimated) 58.4%
table-tops, T-arrays (CNC) & array (true) 58.3%
table-tops, T-arrays (BCC) & array (estimated) 55.6%
table-tops, T-arrays (BCC) & array (true) 55.0%

confusion network combination

Microphone Type
close talk

Mark III array

table-top

T-arrays (single microphone)

Table 1: Word error rates (WER)s for different single micro-
phones and multiple microphones.

expected to lead to further gain.
In the future we want to use advanced techniques such as

cepstral domain maximum likelihood beamformer [17] for the
MA and replace BCC by blind source separation techniques. On
the text level, incorporating a larger number of hypotheses on
different microphones has improved results in all experiments
where similar types of microphones has been used and similar
WER has been reached. Therefore, we would expect this trend
to continue for additional accuracy using more microphones,
but time constraints limited our ability to run these larger exper-
iments which will be done in the future. On different types of
microphones and WER the use of CNC could not always lead
to an improved accuracy. Furthermore, cross adaptation from
hypothesis generated by a different microphone is expected to
slightly improve the accuracy and could be explored in the fu-
ture.
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