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Abstract 
Background models have been widely used for video 

surveillance and other applications. Methods for 

constructing background models and associated application 

algorithms are mainly studied in the spatial domain (pixel 

level). Many video sources, however, are in a compressed 

format before processing. In this paper, we propose an 

approach to construct background models directly from 

compressed video. The proposed approach utilizes the 

information from DCT coefficients at block level to construct 

accurate background models at pixel level.  We implemented 

three representative algorithms of background models in the 

compressed domain, and theoretically explored their 

properties and the relationship with their counterparts in the 

spatial domain.  We also present some general technical 

improvements to make them more capable for a wide range 

of applications. The proposed method can achieve the same 

accuracy as the methods that construct background models 

from the spatial domain with much lower computational cost 

(50%  on average) and more compact storages. 

1. Introduction 

The explosive growth of video sources has created new 

challenges for data transmission, storage, and analysis. 

Various data compression technologies have been widely 

used to solve problems of video transmission and storage. 

We are now able to continuously record multiple video 

streams from video cameras onto a computer hard disk using 

hardware compression devices. However, how to process 

these video data is still an open problem. Traditional 

computer vision algorithms may not be efficient enough to 

process huge video data, because most computer vision 

algorithms are designed for uncompressed images in the 

spatial domain. Suppose we record video at 30 frames per 

second. For only one camera, we would have 2,592,000 

frames per day. It is clear that we need more efficient ways 

to process these video data. 

Video surveillance is a major source that can generate 

huge video data. Visual surveillance systems use video 

cameras to monitor the activities of targets in a scene, such as 

human activity in indoor environments and vehicles in 

parking lots. It is very difficult, however, for a human 

operator to remain alert for more than a few hours. 

Automatic tracking technologies have been studied for 

decades to replace or reduce human efforts. A fundamental 

technology used in the existing tracking systems is 

background subtraction, which segments moving regions in 

an image sequence captured from a static camera by 

comparing each new frame with a background model. A 

crucial step of this technique is to obtain a stable and 

accurate background model from a video sequence. 

Much research has been directed to building background 

models. Background models have been estimated from pixel 

values at each location in a video sequence. Pixel values can 

be gray or color. Basic methods are the average method [1], 

the running average method, the median method [2], and the 

selective average method. Advanced methods are mostly 

based on statistical modeling techniques, such as the single 

Gaussian estimator (pfinder) [3], the mixture of Gaussian 

estimator [4], the kernel density estimator [5], the sequential 

kernel density estimator [6], the mean-shift estimator [6], the 

eigen background [7], and the robust PCA background [8]. 

Some methods also take the correlations of pixels with their 

neighborhood into account [9]. All the above methods 

require a video sequence in uncompressed format. On the 

other hand, researchers in multimedia processing areas have 

also proposed some methods for building background models 

in the compressed domain [10][11][12][13]. They were 

developed for segmenting moving objects or for encoding 

purposes. Most algorithms use only Discrete Cosine 

Transformation (DCT) DC coefficients and work on block 

level. For example, the algorithm in [11] extracts objects at a 

size of 8 by 8 blocks and can not obtain accurate object 

contour. Furthermore, these algorithms are disconnected 

from the spatial domain, where many computer vision and 

image processing technologies have been developed. 

In this paper, we propose an approach to model 

background directly from a compressed video using DCT 

coefficients. The proposed approach can not only efficiently 

construct background models from compressed video but 

also achieve accuracy as good as that of algorithms in the 

spatial domain. This can lead to a more efficient framework 

to process compressed video data from both compressed 

domains and spatial domains. Furthermore, the proposed 

approach can take advantage of the structure and available 

information in the compressed video in implementing state-

of-the-art background modeling algorithms. For example, 

when we use a mixture of Gaussian (MoG) to model the 

background from compressed video, the model has less non-

zero parameters, because DCT coefficients are orthogonal.  

The rest of the paper is organized as follows. In Section 2, 

we introduce modeling a background in the spatial domain 

and some basics for compressed video. We describe three 
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common background models: running average, median, and 

MoG, used in the spatial domain. In section 3, we present the 

proposed method. We discuss implementations of running 

average, median, and MoG in the compressed domain. The 

proposed three algorithms can achieve the same or 

comparable accuracy in the compressed domain as in the 

spatial domain but with much less computational cost. This 

means that those models obtained from the compressed 

domain can be directly used in the spatial domain, which 

bridges two domains together. In Section 4, we show the 

experimental results. In Section 5, we conclude the paper. 

2. Problem Description 

The goal of background modeling is to automatically obtain 

a static image that contains only background from a sequence 

of video captured by a fixed camera. Intuitively, we consider 

the main challenge of the background modeling is the 

occlusions of foreground objects. In practice, there are many 

other challenges from the motions of background objects and 

illumination changes of the environment, for example, the 

high-frequency background object motion (water waves, tree 

branches, and CRT display), camera oscillations, long-term 

static foreground object (e.g., a parked car), gradual lighting 

changes from sunshine, sudden lighting changes from clouds 

and regular lighting changes from indoor lights, etc. 

2.1. Background Modeling in the Spatial Domain 

Many background modeling methods have been proposed in 

the spatial domain. Here, we overview three typical 

algorithms in details. Lo et al. [1] proposed a fast algorithm 

that constructs the background image as the average of the 

previous n frames. The algorithm requires plenty of memory 

to store the previous n frames. A alternative method is called 

running average, which estimates the background 1tB  from 

only the current frame tF  and the previous background tB :

1 1t t tB F B ,   (1) 

where the learning rate  is typically set as 0.05.  

The drawback of these average methods is that the 

foreground objects can leave some “ghosts” in the 

background images. Cucchiara et al. [2] proposed to use a 

median function to obtain the background. In this algorithm, 

each location ,x y  in the background image ( , )tB x y at

time t  is computed by the following equation: 

,

0,..., 0

( , ) arg min ( , )
n

i j
t t

i n j

B x y D x y ,  (2) 

where 
,

{ , , )
( , ) max ( , ). ( , ).i j

t t i t j
c r g b

D x y F x y c F x y c , (3) 

and the ( , ).tF x y c  are the R, G, B values of the pixel at (x, y)

in the frame for time  t .

We can also use selective algorithm to remove residues 

from foreground objects. Each pixel in the current frame is 

first classified as either foreground or background. Those 

foreground pixels are not used in constructing the 

background model. The difficulty of the selective method is 

how to choose the classification threshold. Wren et al. [3] 

proposed to fit one Gaussian distribution to the histogram of 

the pixel values in previous n frames. This gives the 

background PDF with variances rather than single means 

(average values). Stauffer et al. [4] extended this idea into 

MoG ( , ) ~ , ,i i i
t t t tB x y N w . Each pixel has a MoG, 

which is firstly initialized by k-means and updated by every 

new frame. The algorithm first computes the matching 

models for each pixel (x, y):

1 ( , ) 2.5

0

i i
t t ti

t

F x y
M

otherwise
.   (4) 

The weights are then updated as: 

11i i i
t t tw w M ,    (5) 

where  is a constant related to the speed of the distribution 

change. The unmatched models remain the same and the 

matched model is updated as: 

11 ( , )i i i i
t t t t tF x y   and 

11 ( ( , ) ) ( ( , ) )i i i i i T i
t t t t t t t tF x y F x y , (6) 

where 

2

2

( , )
exp( )

2 2

i
t t

i
t i i

t t

F x y
.

We will implement the counterparts of these three 

algorithms in the compressed domain in Section 3. 

2.2 Compressed Video and DCT 

To transmit and store video data efficiently, video 

compression techniques are employed to reduce the size of 

an image sequence by removing spatial and temporal 

redundancy. According to the popular international standards 

of video compression, such as MPEG-1, 2, 4, and H.26X, a 

compressed video consists of I, P, B frames where P and B

frames can only be reconstructed by using adjacent I frames. 

Each I frame is first partitioned into  8 by 8 pixel blocks in 

the spatial domain, and then each pixel block is encoded as a 

set of Discrete Cosine Transformation (DCT) coefficients. 

The Discrete Cosine Transformation is defined as follows: 

7 7

,
0 0

( , ) ( , ) ( , )      , 0,1,...,7i j
i j

C u v I i j b u v u v      (7) 

where ),( jiI  is a pixel value at the location ( , )i j in pixel 

blocks, ( , )C u v is a DCT coefficient matrix, which 

characterizes the power distribution of signals with different 

frequencies ( , )u v .  The basis matrix is defined by 

,

(2 1) (2 1)
( , ) ( ) ( )cos( )cos( )

16 16
i j

i u j v
b u v u v , (8)



where 1
( )

2 2
s  if 0s , 1

( )
2

s , otherwise .  

If we concatenate every column of the matrix ( , )C u v

together into a 64-dimensional column vector c , and form 

another column vector p  using all the pixels of ( , )I i j  in 

the same way, DCT can be rewritten into a compact matrix 

multiplication, as 

c Kp , (9)

where K  is a 64 by 64 matrix and its 
thm  column is just 

the vector form of the matrix 
, ( , ) ,  8i jb u v m i j . Because 

DCT is an orthogonal transformation, 
1 TK K . Thus, 

inverse DCT (IDCT) can be defined by Equation (10), 

Tp K c    (10) 

where 
TK denotes the transpose of the matrix K .

The IDCT is the most expensive part of video decoding.  

An algorithm operating in the compression domain generally 

means IDCT computation is not involved in the algorithm.  

3. Background Construction in DCT Domain 

In our framework, we use a set of DCT coefficients as the 

data structure to represent a background, i.e., 

{ , 1, 2,... }kD d k L , where 
kd is a 64-dimensional vector 

characterizing an 8 by 8 region corresponding to the 
thk pixel block, L  is the number of blocks in a frame of the 

analyzed video sequence. Through reviewing those state-of-

the-art background subtraction techniques, we found many 

popular algorithms exploit a sequence of linear evaluations to 

construct their background models. Here, we will 

mathematically prove that, if a background construction 

algorithm only involves a sequence of linear evaluations, the 

proposed background representation will have a counterpart 

in the DCT domain, which has much lower time complexity 

but does not lose any accuracy for a generated background. 

We use the matrix 
1 2[ ... ... ]k L

i i i i iF f f f f  to denote the 

frame i  in a video sequence, and use a 64-dimensional 

column vector k
if  to denote the 

thk  block. Thus, the DCT 

transformation of the matrix 
iF  can be computed by 

i iD KF , (11)

where 1... L
i i iD d d  and the DCT coefficients of each 

block
k k
i id Kf . So the IDCT can be computed through:  

i

T

i DKF . (12)

Suppose a spatial domain background tB  is modeled 

using linear combination of recent frames,  

0

N

t i t i

i

B F , (13)

where ,...)2,1(ii
 are weights specified by background 

modeling algorithms. Let the matrix 
tB  and 

iF  have the 

same structure as those defined in Equation (11), i.e., each 

column vector corresponds to a block in a frame, and let both 

sides of Equation (13) be multiplied by the DCT kernel 

matrix K , we obtain  

0

( )
N

t i t i

i

KB KF

Let
t

B

t KBD ,
ii KFD , we have 

0

N
B

t i t i

i

D D .                                     (14) 

 Apparently 
B

tD  is a matrix made up of DCT coefficients. 

Thus, Equation (14) gives an equivalent background 

computation model in the DCT domain, through which 

background can be constructed with the same accuracy as its 

counterpart does in the spatial domain, but fully 

decomposing a video sequence is not required. 

3.1 Running Average Algorithm in DCT domain 

In the running average algorithm only linear evaluations are 

involved, so we can obtain its equivalent version in DCT 

domain. If we initialize the background by 1 1B F  and let 

Equation (1) be iteratively extended, we will have         

1

1 1
0

(1 )  =  ( (1 ) ) (1 )
t

i t
t t t t i

i

B F B F F .    (15) 

Following the same procedure from Equation (13) to (14), 

we derive the implementation of the running average 

algorithm in the compression domain as: 

1 (1 )B B
t t tD D D                                          (16) 

where 
B
t tD KB  and t tD KF . Each entry in the matrix 

tD

can be directly obtained with very small decoding cost for an 

MPEG video decoder. Apparently an algorithm operating on 

tF  will generally be far less efficient than the counterpart 

operating on 
tD , because the former needs to frequently use 

Equation (12) to obtain 
tF , while the latter does not. 

Moreover, the latter can obtain an estimation of background 

as accurate as that generated by the former algorithm by 

applying IDCT to 
B

tD 1
 using Equation (12), when required. 

3.2 Median Algorithm in DCT domain 

The median algorithm in the pixel domain has been accepted 

as a simple and effective method through experimental 

evaluations. In this subsection, we first analyze 

mathematically and explain the rationality of the algorithm; 

then a theoretical principle will be derived for the proposed 

median algorithm in DCT domain through further analysis; 



finally we present the details of our median algorithm and 

discuss some advantages compared with the median 

algorithm in pixel domain.  

In a history window at the location  ( , )x y , all the pixels can 

be partitioned into two sets and we let ),( yxFO  and 

),( yxBO  denote the set of pixel values corresponding to a 

foreground object and the set for background respectively. It 

is easy to mathematically prove that, if  

)},(max{ yxBO < )},(min{ yxFO    (17) 

 or  )},(min{)},(max{ yxBOyxFO   (18) 

holds, the median of the set ),(),( yxBOyxFO  will 

belong to the set that contains more elements. Generally 

Equation (17) or Equation (18) holds, and ),( yxBO

contains more elements in a history window, so the median 

will come from ),( yxBO  and corresponds to the 

background at the location  ( , )x y . That is why the median 

algorithm in spatial domain can work well.  

Now we consider a pixel block t

i
 that lies at the 

location i  in the frame at time t  in a history window. The 

average of all the pixel values in t

i
 is 

( , ) ( ) ( , ) ( )

1
( ) ( ( , ) ( , ))

64 t t

t t t

x y FO i x y BO i

a i p x y p x y ,

 where ( )tFO i and ( )tBO i  respectively denote the set of 

foreground pixels and background pixels in t

i
, ( , )tp x y  is 

the value of a pixel that lies at the location ( , )x y  in the 

frame t . A binary value function is defined: if  ( ) tFO i is a 

empty set, ( ) 1t

i
, else ( ) 0t

i
, to check if the block 

t

i
 is completely covered by background. The function 

( )t

i
 partitioned all the blocks  t

i
 , , 1,.....,t s s s L ,

in the history window into two sets. Correspondingly we use 

)(iAB
 and )(iAF

 to denote the set of averages of those 

blocks that belong the two sets respectively, i.e.: 

( ) { | ( ),  ( ) 1,  , 1,....., }t t

B iA i v a i t s s s L

( ) { | ( ),  ( ) 0,  , 1,....., }t t

F iA i v a i t s s s L

If a pixel at ),( yx  belongs to background, ( , )tp x y

generally changes in a very small range in a short history 

window, i.e. )},(max{)},(min{ yxBOyxBO . Here we 

assume that ( , )tp x y  takes the same value in the window 

when the pixel at time t  is covered by background, and that 

for each location in a block, either Equation (17) always 

holds or Equation (18) always holds if both ),( yxFO  and 

),( yxBO  are not empty. Then we can easily derive that for 

any member ( )i Bb A i , ( )i Ff A i , either 
i ib f  always 

holds in the history window or 
i if b  always holds. 

Moreover, Since )(iAB
 generally contains more elements in 

a history window, the median of )()( iAiA FB
 will belong 

to )(iAB
. Based on the above analysis, we know that for the 

pixel blocks t

i
( , 1,.....,t s s s L ) in a history window, 

if the average of a block t

i
 is just the median of the 

averages of all the pixel blocks in that history window and 

our assumptions hold, then all the pixels in t

i
 are covered 

by background. Thus we can use the median of { ( )ta i ,

, 1,.....,  }t s s s L , to identify the block that can 

represent the background at the corresponding location. 

If we let 0,0 vu  in Equation (7), we obtain  

7 7

0 0

1
(0,0) ( , )

8 i j

C I i j .                          (19)

Thus, the  (0,0)C  reflects the average of the pixels in a block, 

and it is called DC coefficient in the literatures. We use the 

following notation to describe our algorithm: 

The subscript c  is used in the following definitions to 

distinguish different components in color space YCbCr.

)(imdl t

c
 : a 64-dimensional DCT coefficient vector for 

the pixel block i  in the background image at time t.

},,2,1),({ iimdlBkG t

c

t

c
 is a representation of   

the background image using DCT coefficients. 

)(idct t

c
: a 64-dimensional DCT coefficient vector of the 

pixel block i  in the frame at time t. 

)}(,),(),({)( idcidcidciW tnt

c

tt

c

t

c

t

c
denotes a 

recent history window, where )(idct

c
 is a DC coefficient 

for the pixel block i  at time t .

)(vmid  : the function to evaluate the median of the set v

Our background model update procedure is shown as follows:  

For each input frame at time t

,...}2,1,,,),({ iCrCbYcidct t

c

{

For each component c {Y, Cb, Cr} 

              For each block i  with the component c
{

,...}),),(({arg)( tttTidcmidtid T

c
T

)()( )( idctimdl tid

c

t

c

}

      If needed, output { CrCbYcBkGt

c ,,| }

}

Since median evaluation is a kind of nonlinear evaluation, 

the proposed algorithm is not equivalent to the median 

algorithm in spatial domain in theory. In comparison with the 

latter, the proposed algorithm in DCT domain has two 

advantages. First, the algorithm has much lower 

computational cost, since IDCT is not required. Furthermore, 

median evaluation is performed only one time for each pixel 



block while the counterpart in pixel domain performs 64 

times median evaluation. Second, the proposed block-based 

algorithm will not neglect the correlation of pixels in the 

same block. Our algorithm can guarantee each block in a 

background image completely comes from the same frame, 

while the median algorithm in pixel domain operates each 

pixel independently and cannot provide such guarantee.  

3.3 MoG algorithm in DCT domain   

The MoG algorithm in spatial domain models each pixel as a 

mixture of Gaussians. In this subsection, we propose an 

algorithm that models DCT coefficients of each block in 

DCT domain as a mixture of Gaussians.  

We first present a block-based Gaussian background model 

in DCT domain. We assume DCT coefficients in a block 

satisfy a multivariable Gaussian distribution, i.e., 

1

1
32 2

1 1
( | , ) exp( ( ) ( ))

2

                (2 )

T
k k k k k k k k

k

p d d d
M

M

 ,

where 
kd  is a 64-dimensional DCT coefficients vector for 

the block k , ( , )k k  are the mean vector and covariance 

matrix. Here the different components of 
kd are independent 

of each other, since they are evaluated through projecting a 

pixel vector onto a set of orthogonal basis using Equation (9). 

MPEG Video compression standards have exploited this 

orthogonal property of the DCT to remove spatial correlation 

of pixels in a block.  Therefore we can use a variance vector 

 1,...64i
k k i to represent the covariance matrix 

k k I . We can represent ( | , )k k kp d  as a product of 64 

univariable Gaussians, i.e., 
64

2

1

( | , ) ( , )i i i
k k k k k k

i

p d p d . Thus 

we can equivalently assume each DCT coefficient is a 

Gaussian random variable and estimate its parameters 

independently.  

Equation (10) shows that each pixel in a block can be 

evaluated through a linear combination of 64 DCT 

coefficients. Probability theory in mathematics tells us that a 

linear combination of a sequence of independent Gaussian 

random variables is also a Gaussian random variable, and its 

parameters can be derived from the parameters of those 

independent Gaussians. In other words, Gaussians modeling 

pixels in spatial domain can be directly derived from 64 

Gaussians for DCT coefficients. Therefore modeling 

backgrounds using Gaussians in DCT domain is consistent 

with doing it in pixel domain. So we can reasonably 

implement Gaussian based background construction 

algorithms in DCT domain. For example, we can use 

Equation (20) to estimate the parameters of a single Gaussian 

background model. 

, , 1 ,

, , , ,

2 2
, , 1

(1 )

(1 ) ( ) ( )

k t k t k t

k t k t k t k t

i i i

i i i i T i i
k t k t

d

d d
(20)

The MoG algorithm in DCT domain can be further 

implemented. We model each pixel block as a mixture of 

64-demensional Gaussians, and assume each dimension 

of a Gaussian has the same standard variance. The MoG 

algorithm processes each pixel block just as the algorithm 

in [4] does on each pixel. The Euclidean distance is 

chosen as the matching function. A threshold is 

associated with it to determine if the current block 

matches a Gaussian, and the threshold will be updated in 

the similar way that its counterpart deals with variances.  

       A good property of the proposed algorithms is that a 

pixel block is represented with a very compact form. 

Generally DCT can lead to many zero DCT coefficients, 

which reflects signals with some specific frequencies are 

not contained by the pixel block. So a Gaussian in DCT 

domain can be discarded, if its parameter | |k
 is very 

small. That means we can use fewer parameters to 

represent a background than the Gaussian model in pixel 

domain. Since the estimation of variances is not linear 

evaluation, the proposed algorithms are not equivalent to 

their counterparts in pixel domain in theory. The 

proposed MoG algorithm models a pixel block as a 

mixture of Gaussian, instead of 64 mixtures, so much less 

model parameters are estimated in the model adaptation, 

which results in high efficiency in computation.

3.4. Identifying and Segmenting Foreground 

Objects

To identify moving objects, the background subtraction 

technique subtracts an observed image from the estimated 

background image, and those pixels in the difference image 

that have a larger value than a predefined threshold will be 

included in a foreground object. In our framework, we first 

identify those blocks from an observed image that have a 

large difference from those at the same location in the 

background image. Let kf , Lk ,...,2,1  denote a column 

vector made up of pixel values in a block of the observed 

image, and kk Kfd  is the corresponding DCT 

coefficients vector. For the background image, k

Bf  and 
k

Bd

are used to denote a corresponding pixel vector and its DCT 

coefficients vector respectively. We use the Euclidean 

distance between kd  and k

Bd  in Equation (21) to measure 

the extent to which the background in the block k  is 

covered by a foreground object. 

2

k k k

Bd d      (21) 

The Sum of Squared Differences (SSD) is commonly 

exploited by video encoders to measure the extent to which a 

block matches another block, so a large value for 

2

k

B

k ff represents the block k is being covered by a 

moving object. It is noted that   



2

2

)()(

)()(

)()(

)()(

k

B

k

k

B

kTk

B

k

k

B

kTTk

B

k

k

B

TkTTk

B

TkT

k

B

kTk

B

kk

B

k

dd

dddd

ddKKdd

dKdKdKdK

ffffff

,

thus 
k

 is a reasonable measure. If 
k

, where is a 

threshold, the block k  will be labeled as a foreground block. 

Apparently based on the measure we can select those that are 

not labeled as foreground blocks to estimate a background, 

which can make the estimation of the background model 

more accurate. For example, the running average algorithm 

in the compression domain can be improved as 

1

( )                           if 
( )    

( ) (1 ) ( )    otherwise 

B k

B t

t B

t t

d k
d k

d k d k
,

where )(,)( t

B

t kdkd denote the 
thk column vector of the 

matrix B

tD and
tD respectively at time t .

In some applications, the accurate shape information of a 

moving object is preferred. In our framework, given a 

background { ( ) , 1,2,...}B B

t tD d k k  and an observed 

image { ( ) , 1,2...}t tD d k k , a function : t tS D B  is 

defined to accurately segment a foreground object, where 

{ ( ) , 1,2...}t tB b k k denotes a binary image. A 

background pixel is represented by the value 0 while a 

foreground pixel by 1. If the block is not a foreground block, 

( )tb k 0, 0 is a zero vector; otherwise, let 

( ) ( ( ) ( ) )T B

t ttb k K d k d k , and ( , )tb i k  is the 

thi component of  ( )tb k , if the absolute value ( , )tb i k  , 

 is a threshold, ( , ) 1tb i k ; else ( , ) 0tb i k .  If we desire 

the texture and color of moving objects to be kept in the 

resultant image 
tB  and 0 represents a background pixel, just 

let ( , ) ( ( ) ( ) ) ( )T B T B

t t t tb i k K d k d k K d k , when 

( , )tb i k .

4. Further Discussion of DCT-based 

Background Construction 

In this section we will discuss some implementation issues of 

the proposed approaches for different applications.  

4.1 Usage of P Frames and B Frames

P frames and B frames (see in Section 2.2) can also be 

exploited for updating a background model or extracting 

moving objects. A block in P frames or B frames is called as 

an intra-coded block, if it can be encoded independently. 

DCT coefficients of an intra-coded block can be easily 

obtained. An inter-coded block requires information from 

other blocks in encoding. It is usually encoded through 

motion compensation, i.e., a motion vector marking a 

reference block in reference images plus compensation errors, 

i.e.,   

er kddkd )()( , (22)

where )(kd ,
rd ,

ekd )(  denote DCT coefficients vectors 

for the current inter-coded block, its reference  block, and 

prediction errors. If a block in P frames is a part of 

background and is inter-coded, its reference block should 

intuitively be at the same location in a reference frame. Due 

to high-frequency background objects such as tree branches, 

and noises, if the motion vector )(kmv is smaller than a very 

small threshold , i.e., )(kmv < , we can approximate it 

as a zero vector (0,0), which means 
rd  can be estimated by 

the block at the same location in the reference frame, thus 

rr kdd )( .
ekd )( can be directly obtained. If 

rkd )(  is 

available, )(kd can be evaluated through 

er kdkdkd )()()(  and then )(kd can be used for 

background construction or foreground extraction. If 
rkd )(

is not available, i.e., )(kmv > , the block k  will be 

ignored. For B frames, the similar process can be used to find 

those blocks whose DCT coefficients can be directly or 

indirectly obtained precisely, so that they can be used by the 

framework in the same way as blocks in I frames. 

4.2 Filters and Preprocessing  

In a generic background subtraction algorithm operating in 

the spatial domain, filters, especially linear filters are usually 

used in the preprocessing step. For example, simple temporal 

and/or spatial smoothing filters can be used as a 

preprocessing step to reduce noises. Here we will present a 

scheme to show how linear filters can be implemented and 

applied in DCT domain.  

Let a 64-dimensional vector )(kf  denote a block k  in 

the spatial domain, and the corresponding vector in the DCT 

domain is )(kd , so )()( kdKkf T . A linear filter 

operating on a block in the spatial domain can be 

characterized by a 64 by 64 matrix F .  Because the kernel 

matrix for DCT is an orthogonal matrix, we can derive  

( ) ( )

         ( ) ( )

         [( ) ( )]

T

T T

T T

Ff k FK d k

K K FK d k

K KFK d k

. (23)

Equation (23) tells us that if a linear filter F  is applied 

onto a block in the spatial domain, a corresponding filter 
TKFK can be found in the DCT domain, and the results 

obtained after applying two filters to the DCT pair of a single 

block also form a DCT pair. Thus, for a spatial linear 

filter F , we can construct a filter 
TKFK to implement the 



same function in the compressed domain for a single block. 

Compared with the spatial filters operating in pixel domain, 

the proposed scheme in the DCT domain operates in a 

special way. It filters a frame through filtering each block in 

the frame, so block effects may exist due to the same reason 

as margin effects may exist for a filter operating in pixel 

domain. The limitation is inherent due to the techniques 

adopted by the popular video compression standards 

For a temporal linear filter T , T  can be represented by a 

vector
nwww ,...,, 10

. Let )(kfi
, nttti ,.....,1,

denote pixel values vector in the block k  at time i , and 

)()( kKfkd ii
, nttti ,.....,1, . Applying the filter 

T  to the block k  along the temporal axis, we have 

0 0

0

( ) [ ( )]

                  ( )

n n
T

i i i i
i i

n
T

i i
i

w f k w K d k

K w d k

.     (24) 

Equation (24) shows that in our framework we can 

directly apply a temporal linear filter T  to a block’s DCT 

coefficients to implement the same function. Different from 

the proposed spatial linear filter, the proposed temporal 

linear filter is completely equivalent to its counterpart in 

pixel domain. 

5. Experiments 

We have evaluated the proposed algorithms using the 

USF/NIST image sequences, which is publicly available for 

background subtraction and gait analysis [14]. We chose 6 

outdoor sequences, and some representative frames are 

shown in Figure 1, captured at two locations with walking 

humans from the USF/NIST database. One location has 

concrete floor and the other has meadow. Three sequences 

for the same location are captured under different lighting 

conditions. There are many background variations in these 

sequences, such as sudden lighting changes, small motion of 

tree branches, small motion of bushes and shadow distortions 

by the walking people.  

Figure 1 The Frames extracted from the testing 

image sequences 

To simulate the video compression effects, we 

compressed each sequence into the MPEG-2 format. In our 

experiments, the background models are constructed only 

using I frames, which exist every other 9 frames in our 

compressed video streams. Figure 2 shows the background 

images generated by the proposed running average, median, 

and the MoG algorithms in the DCT domain, in comparison 

with those generated by the corresponding algorithms in the 

spatial domain. The learning rate  in the running average 

algorithms and  in the MoG algorithms are 0.05. The length 

of the history window is 9 in the median algorithm. The 

variance in the MoG algorithm is initialized as 10. All these 

configurations keep the same for the algorithms in both 

spatial and DCT domains. 

Running average Median MoG 

Sequence 02463C0AL 

Sequence 03500C0AL 

Sequence 03693C0AR 

Sequence 03532G0AL 



Sequence 03653G0AL 

Sequence 03678G0BR 

Figure 2  Background generated by our algorithms and

their counterparts in spatial domain  

Figure 2 gives all the background images generated for 

six video sequences. For each sequence, the images in the 

first row are generated by our algorithms, and the second row 

by their counterparts in the spatial domain. Our eyes can not 

perceive evident difference in visual quality between them. 

The computation speed of the proposed methods is averagely 

1.02 times faster than their counterparts in the spatial domain 

plus decoding cost. The detailed speed ratio of each 

algorithm is shown in the following Table.  

Table. 1 Computation speed ratios between the proposed 

algorithms and it counterparts in pixel domain 

 Average Median Gaussian MoG 

Speed 1.37 2.50 1.21 3.03 

These experimental results are consistent with our 

theoretical analysis. 

6. Conclusions 

We have proposed some algorithms to construct background 

models directly from compressed video data. In the proposed 

methods, a background model is represented through a set of 

DCT coefficients representing the power of different 

frequencies, and computed based on each 8 by 8 pixel block, 

instead of per pixel. We have mathematically proved that if a 

background construction algorithm in the spatial domain 

only involves a sequence of linear evaluations, there must be 

a counterpart in the DCT domain, which has much lower 

computational complexity but the same accuracy. To 

demonstrate the validity of the framework, we have proposed 

three representative algorithms with different styles within 

the framework, i.e., running average, median, Gaussian, and 

further presented some general possible technical 

improvements to make them more capable for a wide range 

of applications. For each proposed algorithm we all give 

some theoretical derivation and analysis to explore their 

properties and the relationship with the counterparts in the 

spatial domain. The experimental results on standard 

evaluation video sequences are consistent with our 

theoretical discussion. Since our approach has the attractive 

visual accuracy for generated background images, much 

lower computational cost, compact model storage, as well as 

reasonable theoretical explanation, it has many potential 

applications in processing compressed video. 
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