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ABSTRACT
Gaussian classifiers are strongly dependent on their underly-
ing distance method, namely the Mahalanobis distance. Even
though widely used, in the presence of noise this distance
measure loses dramatically in performance, due to equal
summation of the squared distances over all features. The
features with large distance can mask all the other features
so that the classification considers only these features, ne-
glecting the information provided by the other features. To
overcome this drawback we propose to weight the different
features in the Mahalanobis distance according to their dis-
tances after the variance normalization. The idea behind this
is to give less weight to noisy features and high weight to
noise free features which are more reliable. Thereafter, we
replace the traditional distance measure in a Gaussian classi-
fier with the proposed. In a series of experiments we show the
improved noise robustness of Gaussian classifiers by the pro-
posed modifications in contrast to the traditional approach.

1. INTRODUCTION

The distance measure for features is of critical importance
for all kind of classification methods. The well known Maha-
lanobis distance shows good performance for clean features,
but loses performance very fast in the case of noisy features.
To improve the noise robustness of the Mahalanobis distance
we propose to weight the features according to their distances
after the variance normalization.

The organization of the paper is as follows. In section 2
we give a brief review of estimation theory to lay the basis
for the development to follow. The feature weighted Ma-
halanobis distance and two ways how to derive the weights
are introduced in section 3. A series of experiments are per-
formed in section 4. Finally, section 5 presents our conclu-
sion and plans for future work.

2. ESTIMATION THEORY: A BRIEF REVIEW

In this section we briefly review the basics of estimation
theory which are elementary for a good understanding of
the remainder of this paper. For a detailed introduction
see [1, 2]. Elementary to all estimation procedures are dis-
tance measures and a broad variety exists for different pur-
poses [3, 4, 5, 6]. Two widely used measures are:
• The Euclidean distance

(based upon Pythagorean Theorem)

DEuclidean
i =

√
(x−µi)T (x−µi) (1)

where µi represents the mean vector of class {I} and x
represents the sample vector to classify.

• The Mahalanobis distance

DMahalanobis
i =

√
Di =

√
(x−µi)T Σ−1

i (x−µi) (2)

where Σ−1
i represents the inverse of the covariance ma-

trix of class {I}. The Mahalanobis distance is therefore a
weighted Euclidean distance where the weighting is de-
termined by the range of variability of the sample point;
expressed by the covariance matrix.

The covariance matrix itself can be classified into three dif-
ferent types:
• Spherical: The covariance matrix is a scalar multiple of

the identity matrix, Σ j = σ2
j I.

• Diagonal: The covariance matrix is diagonal,
Σ j = diag(σ2

j,1,σ
2
j,2, . . . , ,σ

2
j,d).

• Full: The covariance matrix is allowed to be any positive
definite matrix with rank d×d.

In the definition of the Gaussian distribution

p(x|ωi)=
1

(2π)d/2|Σi|1/2 exp
{
−1

2
(x−µi)T Σ−1

i (x−µi)
}

=
1

(2π)d/2|Σi|1/2 exp
{
−1

2
Di

}
, (3)

which is later needed for the Gaussian classifier, it is apparent
that the squared Mahalanobis distance is part of the equation.

Bayes’ decision theory forms the basis of statistical pat-
tern recognition. The theory is based on the assumption
that the decision problem can be specified in probabilis-
tic terms and that all of the relevant probability values are
known. With the posterior probability P(ωi|x) or the class-
conditional probability density p(x|ωi) and the prior proba-
bility P(ωi) we can write Bayes’ decision rule as

iBayes = argmax
i

P(ωi|x) = argmax
i

p(x|ωi)P(ωi) (4)

which maximises the classification rate.
A Gaussian classifier (GC) uses Bayes’ decision theory

where the class-conditional probability density p(x|ωi) is as-
sumed to have a Gaussian distribution (3) for each class ωi.
Under the assumption of multivariate Gaussian densities we
can write the discriminant function as:

di(x)= log p(x|ωi)P(ωi) (5a)

=−1
2
(x−µi)T Σ−1

i (x−µi)+ logP(ωi) (5b)

−1
2

log |Σi|−
d
2

log2π

=−1
2

Di + logP(ωi)−
1
2

log |Σi|−
d
2

log2π (5c)
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From (5a) to (5c) it is apparent that one part of the discrimi-
nant function is composed of the squared Mahalanobis dis-
tance. Once we have the Gaussian discriminant functions,
data x is assigned to class i if

iBayes = argmax
i

(
−1

2
Di + logP(ωi)−

1
2

log |Σi|
)

. (6)

Therefore, the decision process uses the squared Maha-
lanobis distance.

3. WEIGHTING THE DISTANCE AND
CLASSIFICATION

In this section we show the drawback of the Mahalanobis
distance in the presence of noise and introduce a variety of
approaches to overcome this drawback.

3.1 Drawback of the Mahalanobis Distance
The drawback of the Mahalanobis distance is the equal
adding up of the variance normalized squared distances of
the features. In the case of noise free signals this leads to the
best possible performance. But if the feature is distorted by
noise, due to the squaring of the distances, a single feature
can have such a high value that it covers the information pro-
vided by the other features and leads to a misclassification.
Therefore, to find classification procedures which are more
robust to noise we have to find a distance measure which
gives less weight to the noisy features and more weight to
the clean features. This can be reached by comparing the dif-
ferent input features to decide which feature should be given
less weight or being excluded and which feature should have
more weight.

The name ’weighted Mahalanobis distance’ is quite fre-
quently used in different publications; e.g. [7, 8, 9] with
quite different meanings. To not further confuse this situation
the proposed features in this publication are dubbed feature
weighted Mahalanobis distance, or simply feature weighted
distance.

3.2 Feature Weighted Mahalanobis Distance
The Mahalanobis distance is one of the fundamental and
widely used techniques as a distance measure for classifica-
tion. Therefore, the Mahalanobis distance should be used as
a basis of our new weighted distance metric.

The features which are distorted by noise have, in aver-
age, a higher influence on the distance measure than the less
distorted features as they are further away from the feature
mean of the class. Therefore, we aim to lower the influence
of these features by reducing their weight. To find the fea-
tures which have the strongest influence on the distance we
solve the Mahalanobis distance equation for every single fea-
ture c over all input samples i and classes j and store the
value in Z:

∀c, i, j : Zi, j[c] = (xi[c]−µ j[c])Σ j[c,c]−1(xi[c]−µ j[c]) (7)

The goal now is to give less weight to the features with high
distance and vice versa to avoid the masking of the features
with small distances.

∀i, j : Dweighted
i, j =

N

∑
c=1

wi, j[c] ·Zi, j[c] (8)

under the two constraints:

∀c : w[c]≥ 0,
N

∑
c=1

w[c] = N (9)

This leaves us with the question of choosing proper
weights. A lot of different reasonable ways exists, e.g. giv-
ing zero weight to the feature with the highest distance and
normalize the other weights. In the following sections we
want to concentrate on two promising approaches.

3.3 Descent Feature Weights
In this approach the goal is to choose the weights such that
all features have the same influence on the distance measure.
Therefore, we have to normalize the features under consider-
ation of their average distance. First, the vectors of the Ma-
halanobis distance have to be sorted over their values in as-
cending order Zsort[1] ≤ Zsort[2] ≤ ·· · ≤ Zsort[N]. Thereafter
we have to sum over all samples and classes and normalize
by the number of samples and classes

∀c : Zsum[c] =
1
M

1
L

M

∑
i=1

L

∑
j=1

Zsort
i, j [c]. (10)

If not all samples to classify are known beforehand, the sum-
mation over all samples can be replaced with the sample to
classify with nearly no loss in accuracy (on our test set it was
below 0.1%).

To derive the weights under the two constraints (9) we
first have to invert the distances and then normalize

∀c : w[c] = N · 1/Zsum[c]
∑

N
a=1 1/Zsum[a]

(11)

With the given weights ∀i, j : wi, j[c] = w[c] the descent
feature weighted distance can now easily obtained by (8).

3.4 Difference Feature Weights
Another approach could give more weight to features which
are similar to other features than to features which are very
different. The idea here is that noisy features should be sig-
nificantly different from noise free features, as long as only a
small number of features are distorted by noise.

We can calculate the difference d[c] for the features as

∀c, i, j : di, j[c] =
N

∑
a=1

∣∣Zi, j[c]−Zi, j[a]
∣∣ , (12)

normalize and invert to calculate the individual weights

∀c, i, j : wi, j[c] =
∑

N
a=1 di, j[a]
N ·di, j[c]

(13)

These weights could be directly used in (8). Additionally,
we could concatenate the descent weighted approach by re-
placing Zi, j[c] of (10) with the difference weighted distances
Zi, j[c] = wi, j[c] ·Zi, j[c]. Indeed, this concatenation was found
to be better than the simple use of (8) and therefore should be
referred to as the difference feature weighted distance, drop-
ping the word descent.
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Weight Number 1 2 3 4 5 6 7 8 9 10
Development Set Weights 3.277 1.730 1.153 0.946 0.846 0.764 0.637 0.310 0.196 0.142
Calculated Weights 3.335 1.886 1.296 0.966 0.750 0.592 0.465 0.354 0.243 0.112

Table 1: Comparing the weights of the a posterior derived weights on the development set and the weights calculated
by (10) to (11) on the test set.

3.5 Feature Weighted Gaussian Classifier
The descent or difference feature weighted distance can now
simply implemented into the GC by replacing the Maha-
lanobis distance in (6) by the novel distance measures. We
have dubbed this new class of classifiers feature weighted
GC, where the word descent or difference should be added to
separate between the derivation of the weights.

4. EXPERIMENTS

For our experiments we have set up 20 Gaussians, each
representing one class, in a 10 dimensional feature space.
The mean and variance parameters of each Gaussian are
randomly generated. For generating the mean vectors we
have used a Gaussian distributed random generator with zero
mean and a variance of 10. For the variance, again, a
Gaussian distributed random generator with zero mean, but
this time with variance of 30 was used. The priors are uni-
formly spread. The covariance structure is a diagonal model.
With the prior definition of the Gaussian distribution we build
a test set by generating 1000 random samples (50 for each
class). All tests were repeated 50 times and their results were
averaged to smooth statistical variance.

4.1 Plausibility Check of the Weights Calculation
To check if the calculation of the weights as given
from (10) to (11) is reasonable we optimise the weights based
on a development set, comprised of 1000 additional ran-
domly selected samples, such as to give the best classifica-
tion performance. Due to calculation time we have optimized
only for a noise level of 10 over all features using the descent
weighted feature approach. As we can see from Table 1 the
weights using a posteriori knowledge are very similar to the
ones calculated by (10) to (11). Comparing the accuracy on
the test set, Table 2, we see that the traditional approach can’t
reach the performance of the descent feature approach which
performs very similar on both sets of weights. The set of
calculated weights performs even slightly better than the a
posteriori derived weights. Therefore, the assumption that
all features should have the same influence on the distance
measure is reasonable.

Gaussian Classifier Type Accuracy
Traditional 43.5%
Development Set Weights 49.3%
Calculated Weights 49.9%

Table 2: Accuracy on the test set for the traditional Gaussian
classifier and the descent feature Gaussian classifier with a
posterior derived weights on the development set and the
weights calculated by (10) to (11) on the test set.

4.2 Missing Features

Here we investigate the degradation of our Gaussian classi-
fier’s performance where features are missing (set to zero).
This scenario can happen, e.g., if different features are de-
rived by different sensors and one ore more sensors are not
delivering data. Comparing the different classifiers in Fig-
ure 1 we see that the novel approaches perform superior
over the traditional GC. In the case of the difference feature
weighted GC the performance gain is lost if more than six
features are missing. For the descent feature weighted GC
the gain remains.
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Figure 1: Accuracy of the traditional Gaussian classifier
(GC) and the two feature weighted Gaussian classifiers
(FWGC)s over the number of missing features.

4.3 Noisy Features

Here we investigate how additive noise is disturbing the ac-
curacy of our Gaussian classifier on different number of fea-
tures and noise level.

Figure 2, Figure 3 and Figure 4 are plotting the accu-
racy over one, three and five noisy features (the feature
is randomly selected and therefore unknown) for the tradi-
tional GC, the descent feature weighted GC and the differ-
ence feature weighted GC. In the case of noise free fea-
tures, the traditional GC performs slightly better than both
novel approaches. For small noise values for one, three or
five random channels the descent feature weighted GC per-
formes best while for high noise values the difference feature
weighted GC is the best choise.

The most interesting case, of course, is where all features
are distorted by noise, Figure 5. Here the difference feature
GC performs equally well as the traditional GC for less noise
and worse for a high noise level. But, for all noise levels, the
descent feature weighted GC performs best.
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Figure 2: Accuracy of the traditional Gaussian classifier
(GC) and the two feature weighted Gaussian classifiers
(FWGC)s for one randomly distorted feature.
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Figure 3: Accuracy of the traditional Gaussian classifier
(GC) and the two feature weighted Gaussian classifiers
(FWGC)s for three randomly distorted features.

5. CONCLUSION AND FUTURE WORK

We have shown two new approaches based on weighting of
the features to improve the robustness to noise as well as
missing features of the widely used Gaussian classifier. In
a series of simple experiments we have shown the usefulness
of the proposed approaches, where for non distorted features
the new approaches perform nearly equally well and show
significant gains if distorted or missing features exist. Nev-
ertheless, so far we have worked with simulated data, thus
we want to implement this approach in different applications
such as speech recognition or face verification. We also plan
to investigate if the gain due to the new approach is still ap-
parent after different normalization algorithms and methods
such as linear discriminant analysis.
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