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Abstract

When building systems for automatic speech recognition,
one often faces the challenge of dealing with speech sig-
nals containing noise. This additional noise leads to a
drop in recognition performance, especially, when the
acoustic environment varies during training and test-
ing of a system. There exist several approaches to deal
with noisy data or mismatched conditions. We evalu-
ate two different approaches: Histogram Equalization
(HEQ) and Synchronized Damped Oscillator Cepstral
Coefficients (SyDOCC). While HEQ tries to normalize
the statistical properties of the input features in an un-
supervised manner without requiring a noise estimate,
SyDOCCs model the acoustic properties of the human
ear more accurately than Mel-Frequency Cepstral Coef-
ficients (MFCCs). We evaluate both approaches using
data with artificially added noise as well as data that
contains genuine noise due to the recording conditions.

Index Terms— Noise-Robust Speech Recognition, His-
togram Equalization, Synchronized Damped Oscillator
Cepstral Coefficients

Introduction

Large vocabulary continuous speech recognition
(LVCSR) performs well under clean conditions. Those
include a high signal-to-noise ratio (SNR) as well as
matching channel characteristics. But when using data
with a low SNR or mismatched conditions performance
decreases. In recent years, a wide range of applications
using LVCSR have arisen. In some of these applications
the recording conditions cannot be controlled. While
humans are able to understand speech even in such cases
where the SNR is low or the channel characteristics are
varying, automatic speech recognition does not perform
well under such circumstances. Hence the need for
robust speech recognition to deal with such issues.

There exist different approaches to deal with mismatched
conditions. One possibility is to extract features that
are inherently more robust or to post-process features to
minimize the effect of different conditions.

Related Work

HEQ is an instance of a non-linear statistical matching
algorithm which was derived from image processing. It
was adopted for robust speaker recognition [1] and au-
tomatic speech recognition, e. g., [2, 3, 4]. Main imple-
mentation differences are the approximation of cumula-

tive distribution functions (CDF) by order statistics [1],
quantiles [5] or histograms [3, 4]. The reference distribu-
tion can be estimated from training data [3] or artificially
chosen, e. g., as standard normal distribution [4]. HEQ
can be regarded as non-linear improvement to the lin-
ear normalization methods Cepstral Mean Normalization
(CMN) [6] and Cepstral Mean and Variance Normaliza-
tion (CMVN) [7]. In addition to the first two statistic
moments addressed by these methods, HEQ also nor-
malizes all higher order statistic moments [4].

A traditional pre-processing pipeline features MFCCs.
While they perform well under clean conditions, per-
formance degrades significantly when dealing with mis-
matched conditions or noisy data. There exist several al-
ternative input features that try to overcome the short-
comings of MFCCs. Those include RASTA-PLP [8] or
PNCCs [9]. SyDOCCs [10] are a novel technique that
try to mimic the properties of the human auditory sys-
tem.

Methods for Noise-Robust Speech Recog-
nition

In this paper, we evaluate two techniques to deal with
noisy and/or mismatched acoustic conditions. They
approach the problem at different stages of the pre-
processing. While SyDOCCs are a new kind of input
features, HEQ relies on post-processing features to level
out mismatches.

Histogram Equalization

HEQ is an unsupervised, non-parametric normaliza-
tion approach applied to an existing feature extraction
pipeline. The goal is to reduce mismatch between feature
spaces due to different acoustic conditions. Especially the
cepstrum is particularly sensitve to additive noise, as it
introduces non-linear distortions [11].

The HEQ transformation is applied independently for
each feature vector component. Let (x1, . . . , xN ) be the
values of a feature vector component of a sequence of N
feature vectors (e. g., of an utterance). A transformation
T(xi) = yi is chosen to the effect that the distribution
of the transformed sequence (y1, . . . , yN ) matches a ref-
erence distribution, either gathered from training data,
or simply a standard normal distribution [4]. This re-
sults in a monotone transformation which is non-linear
in general. It can be found by utilizing the cumulative



distribution functions (CDF) of the input sequence, de-
noted as CDFdata(x) and the targeted reference distribu-
tion, denoted as CDFref(y). The transformed value yi is
found where the CDFs match.

CDFdata(xi)
!
= CDFref(yi) ⇒ yi = T(xi), (1)

and therefore

yi = T(xi) = CDF−1
ref (CDFdata(xi)) (2)

as shown in [4].

When applying the transformation consistently for all se-
quences in training and testing, invariance to arbitrary
non-linear distortions can be established. The main as-
sumptions include: 1) For each feature vector component
the distribution over a clean sequence is assumed to be
the same for all clean sequences. 2) Each component can
be normalized independent of each other. 3) The distor-
tions caused by noise are monotone transformations and
therefore fully invertible. As a main advantage of this
approach no noise estimate or model is necessary.
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Figure 1: Utilized pre-processing pipeline for MFCCs: nor-
malization is performed before and after LDA and may be
either CMN, CMVN or HEQ. Normalization is omitted in
the baseline system.

Synchronized Damped Oscillator Cepstral Coef-
ficients

Speech recognition in noisy environments is difficult, as
ASR systems are sensitive to changes in environmental
conditions. The use of SyDOCCs [10] is a novel approach
towards the pre-processing of an audio signal, motivated
by the human auditory system. In contrast to MFCCs,
SyDOCCs use a more sophisticated approach by mim-
icking the features of the inner ear. The auditory system

acts as a frequency analyzer as well as a non-linear am-
plifier. In human sound perception the cochlea processes
the sound waves with the help of hair cells [12]. Each hair
cell reacts to a different resonance frequency. By mod-
elling these characteristics, SyDOCCs aim at extracting
more robust features that are insensitive to noise or mis-
matched conditions. This behaviour is modeled by using
a Gammatone filter-bank in combination with damped
oscillators. The filter-bank performs a frequency anal-
ysis and splits the signal into different frequency bins.
The signal energy in each of these bins is used as a forc-
ing function to excite oscillators. In contrast to MFCCs,
SyDOCCs make use of the phase information. Each os-
cillator is synchronized to its two neighboring oscillators
to oscillate in-phase. This raises the amplitude of the
signal through the correlation of adjacent frequency bins.
In case of uncorrelated noise, there is no phase alignment
possible leading to no amplification. After the synchro-
nization step, the envelope of the output of the oscillators
is computed using modulation filtering which is followed
by a power computation. As last step, a discrete cosine
transform is applied. Out of this transform, only the first
13 coefficients were retained and based on them a joint
feature vector using the 13 coefficients itself as well as ∆s
and ∆∆s is constructed.

There are two degrees of freedom implementing
SyDOCCs: The center frequency of the Gammatone
filter-bank and the dampening factor of the oscillators.
In our implementation, we used default parameters and
did not vary them in the experiments.

Experiments and Results

We conducted our analysis using the Janus Recognition
Toolkit (JRTk) [13] which features the IBIS decoder [14].
For each method we performed multiple sets of experi-
ments. In one set of experiments we used clean speech
recordings and artificially added noise. By doing so, we
could assess the effectiveness of the methods for different
SNR ratios. In a second set of experiments we used data
featuring genuine noise to analyze the performance of the
methods on a real-world task. We evaluated the systems
by computing the word error rate (WER) on the output
of the recognizer on a test set.

HEQ

We evaluated HEQ in a set of preliminary experiments
using a corpus of English broadcast news. We artificially
added recorded street noise. The noise was scaled to
match different target SNRs in order to compare HEQ’s
performance to CMN, CMVN and a baseline system
without normalization. Normalization methods are ap-
plied on an utterance basis both in training and testing.
Their integration into the utilized pre-processing pipeline
is shown in Figure 1. We use the standard normal dis-
tribution as reference distribution. The training data
material has a total length of 187 hours, constituting of
7,336 speakers. In testing 3.66 hours were used, contain-



ing utterances by 79 speakers. The context dependent
GMM-HMM recognizer utilizes 6,000 generalized quint-
phones, left-to-right tristate topology, 32 Gaussians per
state, diagonal covariance matrices, trained by incremen-
tal splitting of Gaussians. In order to extract features
from the input signal, we windowed the audio using a
window length of 16ms and shifted that window over the
data using a shift of 10ms.

Results are shown in Table 1 and Figure 2. HEQ out-
performs other systems in the range of -5 and 20 dB but
not for matched conditions. Experiments with different
numbers of histogram bins did not show significant dif-
ferences.

Table 1: Comparison of WERs from HEQ, CMN, CMVN
and baseline for different SNRs.

SNR [dB]
WER

baseline CMN CMVN HEQ

−20.0 96.7 96.0 93.5 94.2
−10.0 93.2 92.7 88.0 88.0
−5.0 87.3 86.2 77.1 75.0

0.0 73.5 70.8 61.0 57.8
5.0 55.6 51.5 46.6 44.3

10.0 41.5 39.0 37.3 36.1
20.0 31.4 30.0 30.1 29.9
30.0 29.6 28.4 28.8 28.9
clean 28.9 27.9 28.4 28.2
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Figure 2: WER of HEQ compared to CMN, CMVN and
baseline

In addition to experiments with artificially noised data,
we also conducted a series of experiments using 8kHz
narrow band telephone conversations containing genuine
noise. We built systems for both Pashto (PUS) and
Tagalog (TGL). Both systems are based on graphemes as
acoustic units. In each of these experiments, we trained
the systems using 100 hours of transcribed speech data.
The test set consists of 10 hours. The pre-processing
pipeline is identical to those of the previous experi-
ment. The systems feature context-dependent models
with 8,000 (PUS) or 10,000 (TGL) generalized quint-
phone states. Table 2 shows that we could not achieve
a lower WER using HEQ as part of the pre-processing
pipeline.

Table 2: Comparison of HEQ to baseline systems for data
containing genuine noise.

System Baseline HEQ

PUS Grapheme 69.1 71.4
TGL Grapheme 69.8 72.8

SyDOCCs

Three sets of experiments were conducted to assess the
performance of SyDOCCs. In the first experiment, the
performance of an ASR system using SyDOCCs versus
MFCCs was compared. We built a system for Italian
broadcast news. 70 hours of audio were used for training.
The test set consisted of 24 minutes of audio. Artificial
white noise was added to the audio of the test set in dif-
ferent intensities. Our context dependent GMM-HMM
recognizer uses 8,000 generalized quintphones. In con-
trast to our HEQ experiments, we use a window size of
25ms for the experiments with SyDOCCs as the origi-
nal implementation uses that size. It was observed that
the use of SyDOCCs on clean data leads to worse re-
sults compared to MFCCs, see Table 3. As the SNR
decreases, using MFCCs results in greater losses in per-
formance compared to SyDOCCs.

Table 3: Comparison of MFCCs and SyDOCCs using data
with different SNRs of test data.

SNR [dB] MFCC SyDOCC rel. gain

25.0 27.0 30.1 -10.3%
19.0 29.0 30.5 -4.9%
15.4 30.9 31.8 -2.8%
12.9 35.1 32.6 7.7%
11.0 41.4 34.6 19.7%
9.4 48.0 36.7 30.8%
8.1 55.0 39.6 38.9%
6.9 62.1 43.8 41.8%
5.9 70.6 48.6 45.3%
5.0 77.1 52.9 45.7%

In the second set of experiments we used the same recog-
nizer as in the previous experiment, but instead of white
noise we used street noise. We conducted 4 different ex-
periments by selectively adding street noise to training
and test set. We compared MFCCs with MFCCs and
SyDOCCs combined. The results can be seen in Table
4. MFCCs show better results if the training data set is
clean. Using noised data to train on, the combination of
MFCCs and SyDOCCs outperform using MFCCs alone.

As final experiment, we assessed the performance on
8kHz telephone speech data containing genuine noise like
we did for HEQ. The results are shown in Table 5. The
baseline for a window size of 25ms is slightly worse com-
pared to 16ms that we used for our HEQ experiments
(Table 2). But like for HEQ, we did not see improvments
from using SyDOCCs compared to MFCCs.



Table 4: Comparison of MFCC and MFCC + SyDOCC
stacked with different combinations of clean and noised data
sets

training test MFCC M + S

clean clean 26.2 28.3
clean street noise 36.3 37.5

street noise clean 27.7 27.5
street noise street noise 36.4 35.1

Table 5: Comparison of MFCC + SyDOCC to baseline
MFCC systems for data containing genuine noise.

System MFCCs M + S

PUS Grapheme 71.5 75.0
TGL Grapheme 75.5 77.9

Conclusion

We have implemented and evaluated two methods for
dealing with speech degradations. Using data with arti-
ficial and genuine noise we have shown that both meth-
ods are capable of dealing with acoustic mismatches un-
der certain conditions. As for the SyDOCCs, additional
parameter tuning is required to achieve optimal perfor-
mance: Varying the center frequency of the Gamma-
tone filterbank or the dampening factor of the oscilla-
tors might have produced better results. In addition to
that, both methods should be evaluated as an additional
source of information with a LVCSR system featuring a
DNN as part of the pre-processing pipeline.
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